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presented with an overview of the rationale behind its design decisions.
Increases in the mechanical work output of the actuator were found to be
possible by using non-linear loads instead of linear loads. Theory and
formulation are presented, suitable for modeling and performance
analysis of actuator and sensor devices composed of deformable,
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response functions. The testing facility was renovated and used for feed-
forward open-loop test methodology utilizing a Force-Voltage model
developed from Ritz Formulation. Linear tests correlated well with
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Abstract

It is generally believed that the maximum actuation efficiency of piezoelectrically driven systems
is a quarter of the material coupling coefficient squared. This maximum value is reached when
the stiffness ratio of structure and piezo stack equals to one. However, previous study indicts
that load coupling has significant influence on the work flow and actuation efficiency in the
systems. Theoretical coupled analysis of such systems has shown that the actuation efficiency
is the highest at the stiffness ratio larger than one and this maximum value is much higher than
that predicted by the uncoupled analysis when coupling coefficient is relatively high. Moreover,
for non-linear systems, the actuation efficiency can be twice as high as that of linear systems.
The objectives of this research is to verify the theoretical coupled analysis experimentally and
explore the possibility for the mechanical work to be done into the environment. To do this, a
testing facility has been designed and built with programmable impedances and closed loop test
capability. However, the feedback control method is not fast enough in determining the voltage
for the driving stack which has limited the test frequency. Meanwhile, the original mechanical
design can not guarantee the accurate measurement of mechanical work Renovation on the
existing tester has been made and feed forward open loop test methodology has been used
utilizing a Force-Voltage model developed from Ritz Formulation. Linear test results correlate
very well with the theoretical prediction. Two non-linear functions have been chosen for non-
linear tests. The results have shown that the actuation efficiency of non-linear systems is much
higher than that of linear systems. The actuation efficiency of system simulated by non-linear
function 1 is about 200% that of linear systems and the work output of this system is about
254% that of the linear systems. These test-results exactly proved out the theoretical prediction
of non-linear loading -systems. The capability of modeling arid testing of non-conservative
thermodynamic cycles have also been demonstrated which make it possible to take advantage
of the mechanical work out of the systems.

Thesis Supervisor: Nesbitt W. Hagood, IV
Title: Associate Professor, Thesis Supervisor
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Nomenclature

a Stiffness ratio, load stiffness divided by material stiffnes

A Cross-sectional area of the material

Ap1  Cross-sectional area of the piezoelectric material, or the sample stack

Ap2 Cross-sectional area of the driving stack

A8  Cross-sectional area of the structure

C 1  Capacitance of the system under constant strain

3 Young's modulus of the active material in the "three-three" direction under

'constant electric field

CO Linear part of the Young's modulus of non-linear loads

c8  Young's modulus of the structure

cT ' Non-linear part of the Young's modulus of non-linear loads

6 Variation operator

d Derivative operator

D3 Electric displacement in the active material in the "three" direction

d33 Electromechanical coupling term of the active material in the "three-three"

direction

e0 Dielectric constant of free space

es Dielectric constant of the active material in the "three-three" direction

under constant strain

631 Dielectric constant of the active material in the "three-three" direction

under constant stress
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F3  Electric field in the active material in the "three" direction

et Electromechanical coupling of active materials

e33 Electromechanical coupling of active materials in the "three-three" direction

f, Generalized force vector of the active material of the sample stack

f2 Generalized force vector of the driving stack

Fb Blocked the force of the active material

Fii.ear Blocked the force of the active material

hinear Linear Load

Fn.-inearl Non-linear load 1

Fno,-1inear2 Non-linear load 2

fll Generalized force vector of the structure

KYj Stiffness of the active material under constant electric field

k. Stiffness of the structure

k33  Material coupling coefficient of the active material

1 Length of material or structure

4P, Length of active material

iS Length of structure

77 Actuation efficiency of systems

77max Maximum actuation efficiency of systems

N Number of layers in piezoelectric stack

01 Electromechanical coupling of the active material

02 Electromechanical coupling of the driving stack

Q, Charge vector of the active material

Q2 Charge vector of the driving stack

S3  Strain in "three" direction of the active material

833 Elastic constant of the active material in the "three-three' direction under

constant electric field
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s33  Elastic constant of the active material in the "three-three" direction at

open circuit

73 Elastic constant of the active material in the "three-three" direction at

open circuit

t, Thickness of the stack layers

V0  Initial voltage to the sample stack

V, Voltage applied to the active material or the sample stack during testing

V2  Voltage applied to the driving stack

V Final voltage to the sample stack

V..x Maximum voltage applied during tests

VPl Volume of the active material or the sample stack

WE Electric Work

WM Mechanical work

Wn Work into the system

W d Work out of the system

x0 Initial displacement

x Displacement of the system

X1 Displacement of the active materials

X2 Displacement of the driving stack

Xfree or x1 Free displacement of the system

qiE Electric mode shape

TIM Mechanical mode shape
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Chapter 1

Introduction

1.1 Motivation

Recently piezoelectric actuators have been extensively used for different applications, such as,

precise positioning[Karl, 2000] and [Roberts, 1999], vibration suppression[Hagood, 1991] and

[Binghamand, 1999], and ultrasonic motors [Bar-Cohen, 1999] and [Frank, 1999, spie]. More-

over, their special characteristics have also made them popular in micro-systems as well as in

optical device applications [Varadan, 2000, spie]. However, to use these actuators efficiently,

it is necessary to evaluate and understand the material response, energy flow and actuation

efficiency in the system at working conditions.

Piezoelectric materials have been initially developed for sensors applications initially which

focus on low power properties. For example, the linear material model is valid for low electric

field. These properties are not appropriate for the applications of actuators which are used

at high frequency, high electric field, and high mechanical loads. Furthermore, standard as-

sumptions about the efficiency of piezoelectrically driven systems neglect the electromechanical

coupling in the system. These pending problems also necessitate the study of work flow and

actuation efficiency in such systems.
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1.2 Objective

The objective of this research is to closely examine the work input, work output and actuation

efficiency in a fully coupled system. Different expressions such as material coupling coefficient,

device coupling coefficient, and efficiency of coupling elements have been used traditionally

to describe the systems. Actuation efficiency, which is a thermodynamic efficiency expression

defined by the ratio of mechanical work out and electrical work in, may best describe coupled

systems.

Previous theoretical analysis [Malindal, 1999] has shown that the actuation efficiency of one

dimensional linear systems reaches the highest when the stiffness ratio of the structure and the

active material is larger than one. This peak value of actuation efficiency is much higher than

the prediction of the coupling element efficiency of Hall [Hall, 1996]when the coupling coefficient

is relatively high. However, for active materials working against non-linear loads, it is possible

to significantly increase the actuation efficiency in the systems. So another objective of this

research is to validate the theoretical derivation and verify the analysis results experimentally,

then to explore the possibility for the mechanical work out of the system to be done to the

environment.

1.3 Previous Work

1.3.1 Material Coupling Coefficient.

Much work has been done in the area of material characterization of actuators and the efficiency

analysis of the systems. However, people tend to use different expressions to describe and

compare the efficiency of systems according to their specific application and interests. Material

coupling coefficient has long been regarded as a measure of the capability of active materials

transduce mechanical work to electrical work and vice versa. Material coupling coefficient k33

is defined as [IEEE,1978]

4 3  = d_ (1.1)8i 33-33

However, material coupling coefficient only describes the interaction of the mechanical and

electrical states in the active materials itself. The conditions under which the material cou-
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pling coefficient is derived are idealized work conditions. The interaction or coupling between

the active materials and the structures, which are driven by the interrelation of force and dis-

placement as well as that of charge and voltage, have all been neglected. Materials coupling

coefficient itself is not an accurate measure of actuation efficiency of systems.

1.3.2 Berlincount's Work

Berlincourt [Berlincount, 1971] found out that boundary conditions, times and orders at which

mechanical load and electrical load were applied could also change the efficiency of the systems.

He defined an effective coupling factor after he studied the differences in efficiency of a few

different cycles. By using these different loading cycles, he changed the amount of energy

extracted from the systems. For example, he claimed that one of the loading cycles increased

the effective coupling factor of PZT-4 to 0.81 while the material coupling coefficient of this

material is only 0.70. He also showed the influence of boundary conditions on efficiency. The

effective coupling factor of a thin disk with clamped edges was increased to 0.68 compared to

the material coupling coefficient of 0.50. He then examined the efficiency of the systems under

ideal linear or non-linear loads assuming one-time energy conversion, which was associated

with polarization or depolarization of active materials. The mechanical work of the systems

using such non-linear loads doubled that using linear loads. However, the effective coupling

factor Berlincourt defined still focused on the information obtained from the material coupling

coefficient, and it did not include the information of the structures that the active materials

worked against. The study of the one-time conversion process considered the dependence on

the structures which the active materials worked against, but the complete depolarization of

the active materials assumed made it difficult to apply this theory to real cyclic operation.

1.3.3 Lesieutre and Davis' Work

Lesieutre and Davis [Lesieutre, 1997]defined a device coupling coefficient when they studied the

changes of material coupling coefficient of a bender device, which composed of two piezoelectric

wafers bonded to a substrate with a destabilizing preload on both ends. They still used the

same work cycle as used by the material coupling coefficient. By means of simplifying the

Rayleigh-Ritz formulation presented by Hagood, Chung and Von Flotow[Hagood, 1990], they

18



destabilized the matrix relation to describe the system. Then, they assumed the proper me-

chanical and electrical mode shapes and found out the corresponding stiffness, capacitance and

electromechanical coupling of the bender without preload. They also discussed the influence of

the axial preload on the stiffness of the bender. Finally, they defined the apparent actuation

efficiency and proper actuation efficiency. The apparent actuation efficiency did not include

the work done by preload, while the proper actuation efficiency included it. They claimed that

the work by preload could not be considered a steady-state source of energy in the system, so

the proper actuation efficiency expression was correct. Although the device coupling coefficient

still looked at the energy conversion of the active materials, it included the effect of the ex-

ternal load. It described the actuation efficiency of a special coupled systems with distributed

elements and could hardly be applied to general cases.

1.3.4 Spangler and Hall's Work

When studying the discrete actuation systems for helicopter rotor control, Spangler and Hall

and later Hall and Prechtl [Hall, 1996] defined an impedance matched efficiency expression.

This expression came from the mathematical study of the linear material load line and linear

structure load line on a stress-strain diagram. The intersection of the two lines was the stress-

strain state for a specific load or electric field condition. The area under the material load

line represented the maximum energy for mechanical work in the active materials, while the

area under the structure load line represented the total strain energy in the structure. They

found out that at most one quarter of the actuation stain energy could be usefully applied to

actuating a control surface.

WMmax 1 WMsystem 1 2
7ax -- WEsystema -- 4 WEsystem 4 k 33  (1.2)

This mathematical optimum occurred at the impedance matched conditions when the stiffness

ratio of the structure and the actuator is one. This imledance matched efficiency served well

in their research, however, they did not take into account the effect of the load, which the

systems worked against, had on the Electrical work into the systems. Therefore, this efficiency

expression is still not a true thermodynamic actuation efficiency for the systems studied.
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1.3.5 Giurgiutiu's Work

Giurgiutiu et al [Giurgiutiu, 1997] studied this effect in 1994. They assumed active materials

such as piezo actuators behaved like electrical capacitors. Under non-load conditions, the

electrical work stored was

E,*e- lCV2 (1.3)

This is actually the Wi in 1.1. However, when external load was applied onto the active

materials, the electrical energy stored inside changed. Giurgiutiu et al modulated their capaci-

tances under external load by the stiffness ration of structures and the active materials. They

found the resulting electrical work to be

Edec (1 k -) * (1CV2) = (1- k21 r)Eec (1.4)
1+r

Where r is the stiffness ratio of structures and active materials. In 1997, Giurgiutiu et

al tried to find the actuation efficiency of a system where a PZT actuator operating against

a mechanical load under static and dynamic conditions. For the static case, they found the

mechanical work out to be

E,.t (1 +r) (1.5)

Where E;.h is actually the ideal work out resulting from electromechanical conversion, i.e.

the W..t in 1.1. They also found mathematically that Eo,& had a maximum value at r = 1.

1
Eo, -nax = -E*,nh (1.6)

When finding the actuation efficiency of the systems, instead of using the ratio of 1.5 to 1.4,

they used the ratio of 1.6 to 1.4 which resulted in

I k 2
1 - k2-  -  (1.7)

r+1

Where k2 is actually k -3 =w, in 1.1. This expression actually has an implied condition

win

which is r = 1, so it is not the correct expression. However, they seemed to have used the correct

expression to find the maximum value for the actuation efficiency of the system. Actually this

20



has been verified mathematically. Giurgiutiu et al also extended their work to dynamic analysis

for a similar case, but they did not experimentally verify their analytical results for both static

and dynamic cases.

1.3.6 C. L. Davis' Work

Davis et al [Davis, 1999] used a different approach than that used by Giurgiutiu to estimate the

actuation efficiency of structurally integrated active materials. They converted the one dimen-

sional linear constitutive equation of piezo element into a set of two equations in the frequency

domain. Then, they found the complex electrical power consumed by the piezo element and

the mechanical power delivered to the mechanical load. They defined their actuation efficiency

of the system as the ratio of this mechanical energy to this electrical energy. Their expression

was in the frequency domain expressed as

(1 +a)* [1 +(1- k 2)*x] (1.8)

Where a here is the ratio of the mechanical load impedance to the effective mechanical

impedance of the piezo element. In a static one-dimensional case, a is actually r as defined in

1.4, and k is actually k33 as in 1.1. After a simple algebraic operation, we can rewrite equation

1.8 as:
+a) 22 

(1.9)1] = - k 2- 'iL-

1+a

Actuation efficiency expressed by Equation 1.9 is exactly the same as the expression of

Giurgiutiu if we use the ratio of 1.5 to 1.4 in their study. Davis et al also extended their work

into dynamic analysis, however, like Giurgiutiu et al, they did not experimentally verify their

work either.

1.3.7 M. Mitrovic's Work

M. Mitrovic et al [Mitrovic, 1999] conducted a series of experiments to understand the behavior

of piezoelectric materials under electrical, mechanical, and combined electromechanical loading

conditions. They evaluated parameters such as strain output, permittivity, mechanical stiff-

ness, energy density and material coupling coefficient as a function of mechanical preload and
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electrical field applied. Unlike the work discussed above, their work was mainly experimental.

They tested five different commercially available piezoelectric stack actuators and found the

stiffness dependence on preload and applied electrical field. They also found out that piezo-

electric coefficients and the energy density delivered by the actuator initially increased when

mechanical preload was applied, however, higher preload had the adverse effect on the stacks'

response. The tests were conducted on a 22 kip Instron 8516 servo-hydraulic test frame. The

mechanical loading frequency was from 0.1 Hz to 40 Hz, while the electrical load frequency was

only 0.1 Hz and 1 Hz. Although they tried to determine the optimum conditions under which

the piezo actuators could be operated and did found some interesting results in mechanical

power delivered from the actuators and electrical power delivered to the actuators, they did not

discuss the actuation efficiency of the systems as a whole. In addition, they did not theoretically

analyze the systems and did not make any prediction as explanations for the test results.

1.3.8 Lutz and Hagood's Work

Lutz and Hagood [Malinda, 1999] studied the actuation efficiency and work flow both analyt-

ically and experimentally. They were also able to extend their work for the systems where

piezo actuators working against not only linear loads but also non-linear loads. They used a

different approach than those used by Giurgiutiu or Davis and studied this problem almost

at the same time. The method they utilized was the Rayleigh-Ritz formulation presented by

Hagood, Chung and Von Flotow[Hagood, 1990], simplified for quasi-static analysis. They found

out that load coupling had significant influence on the work flow and actuation efficiency of the

systems. For linear loading systems, their analysis has shown that the actuation efficiency is the

highest when the stiffness ratio is larger than one. This maximum value is much higher than

that predicted by the uncoupled analysis when the material coupling coefficient is relatively

high, while for non-linear loading systems, actuation efficiency can be twice as high as that

of the linear systems. The analytical results for linear systems actually agree very well with

those found by Giurgiutiu [Giurgiutiu, 1997] and Davis [Davis, 1999]. The equation for linear

systems in [Malinda, 1999] has typos. To verify the analytical results, a testing facility was

designed and built to measure the actual work input, work output, and actuation efficiency of

a discrete actuator working against both linear and non-linear loads. The testing facility was
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designed for load application with programmable impedances and closed loop testing capability

at frequency up to 1 kHz compared to the maximum testing frequency of 40 Hz for an Instron

testing machine. However, due to some mechanical and control problems, it was difficult to

measure mechanical and electrical work accurately. Not much valid experimental data was

obtained, and further exploration was needed.

1.4 Approach

The work discussed in this thesis is a follow-up of Malinda and Hagood's work. For the purpose

of mathematically verifying the theories derived by them and also for the completeness of

this document, the expressions for work input, work output and actuation efficiency will be

derived again using the Rayleigh-Ritz formulation presented by Hagood, Chung and Von Flotow

[Hagood, 1990] at the beginning, and will be compared to those derived previously. General

expressions will be derived first in terms of the actuating voltage of the piezo actuators and

then applied to the chosen linear and non-linear cases. Due to the difficulty in finding the close

form solution for the displacement of the actuators in terms of the applied voltage to them,

expressions for the work and actuation efficiency in terms of displacement of the piezo actuators

will also be derived. The results predicted by the theoretical analysis for linear and non-linear

systems will be compared and contrasted.

Then, experimental data from previous work will be studied and summarized, so as to find

out the remaining problems. Methods used to determine the material properties such as stiff-

ness, capacitance, electromechanical and coupling terms as well as the methods for measuring

mechanical work and electrical work will all be examined. Proper renovation and validation

on the existing test facility will be made to guarantee accurate measurements. For the linear

and non-linear actuation tests, the feed back control methodology will also be checked, and

improvements will be made accordingly.

For the convenience of comparing with the test results obtained before, the same Sumitomo

stack actuator, as used by Lutz, will still be used as the test sample. The experimental data from

linear and non-linear tests will be compared with the theoretical prediction, and an expansion

of this work to non-conservative systems will be discussed.
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1.5 Organization of the Document

This document is organized in the same way as the problem is approached.

Chapter 2 presents the theoretical derivation of the mechanical work, electrical work, and

actuation efficiency for linear and non-linear systems. It begins by defining work terms and

actuation efficiency as well as the constitutive relation for piezo active materials, followed by

the mathematical derivation using the Rayleigh-Ritz formulation mention above. Then it shows

the application of the general expressions to both linear and non-linear cases in terms of either

voltage to the active material or the displacement of it during the actuation tests. The analytical

results for linear and non-linear systems are compared and discussed at the end.

Chapter 3 presents the redesign of the important mechanical part of the tester and the

validation of the test methods. It summarizes the previous test results and some insights on the

remaining problems first followed by discussing the test results from the laser vibrometer, which

reveals the serious bending effect of the sample during tests. After that, possible improvements

based on the tests and previous analysis has are discussed, and the new design of the load

transfer device is exhibited too. Finally, it shows the validation test results made on the new

test facility. These tests include calibration of force, displacement, stiffiiess, and capacitance

measurement which guarantee the correct measurement of mechanical and electrical work.

Chapter 4 presents the test results and their correlation with theoretical prediction. It

begins by discussing the problem of the former feed back control test methodology and presents

the proposed feed forward method. Then, it displays the derived Voltage-Force model using the

Rayleigh-Ritz formulation for the simulated actuator-structure-actuator system. Afterwards,

linear test results are presented first and compared with the theoretical prediction and the

data found in the literature. For the non-linear tests, the two non-linear functions chosen are

analyzed and the driving voltage for the sample is determined, then the determination of voltage

for the driving stack is shown using the established Voltage-Force model. The non-linear test

results are compared with the theoretical prediction and linear test results.

Chapter 5 discusses the possibility for mechanical work to be done on the environment. The

linear and non-linear tests discussed above are all for conservative systems. This chapter shows

that the net work in these systems is zero. To take advantage of the mechanical work from the

actuator, proper thermodynamic cycle should be chosen so that the net work in the system is
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not zero. Possible thermodynamic cycles ulsed in other applications is presented as a reference.

The out of phase actuation of the driving stack and the sample stack at the same frequency is

demonstrated to be such a thermodynamic cycle. The experimental results are also compared

with the analytical results at the end.

Chapter 6 concludes the document and the research. It highlights the important test and

analytical results in the research and their correlation with each other. The possibility for the

mechanical work to be done on the environment is also emphasized. Then recommendations for

future work in this area are presented, and recommendation are made to extand the application

of piezo actuators and take further advantage of them.
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Chapter 2

Analysis of the Work Flow and

Actuation Efficiency of

Electromechanically Coupled

Systems

The system analyzed and the method used in this research are essentially the same as those

used by Malinda and Hagood. The purpose to include this part of work is for the completeness

of this document and a verification of the previous work. In addition, Malinda just found a close

form solution for linear systems in terms of the applied voltage to the active materials, while

for non-linear systems she had to rely on numerical results for work input and output. This

is not convenient because the independent variable in her expression is voltage to the sample

stack, however, there is no close form expression for the displacement of the active materials

in terms of the applied voltage for non-linear cases, which can be seen from the compatibility

equation derived later. To derive a close form expression, we should choose displacement of the

active materials as the independent variable.

The system studied is a generalized system comprised of an electromechanically coupled

core with a generalized energy input, working against a generalized load which has some

defined linear or non-linear relation. The coupled core could be a variety of systems such
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Figure 2-1: Piezoelectrically Driven One Dimensional Model

as a discrete actuator and the magnification mechanism, a mechanically coupled system or a

hydraulic actuation system. The input into the system could be any generalized work pair like

charge and voltage or current and voltage. The output of the system could be another work

pair like displacement and force or strain and stress.

The generalized expression will be derived first, then applied to linear or non-linear cases

for discrete piezo actuator systems. In order to compare and discuss different systems, it is

necessary to define work input, work output and actuation efficiency in the beginning.

2.1 Definition of Work Terms

The system which will be studied has been shown in Figure 2-1. Work input is defined as the

electrical work, while work output is defined as the mechanical work. The actuation efficiency

is then a true thermodynamical efficiency defined as the ratio of mechanical work to electrical

work. Each of the work terms is defined below.
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2.1.1 Mechanical Work

The mechanical work of a system is described as the integral of force times the derivative of

displacement:

WM Fd (2.1)

Or it can be defined in terms of stress and strain as:

WM =Vol Tds .dVol (2.2)

2.1.2 Electrical Work

Electrical work of a system is defined in the same way as mechanical work is defined. It is the

integral of voltage times the derivative of charge:

WE VdQ (2.3)

Or it can be defined in terms of electrical field and electrical displacement as

WE = Vd ID EdD ' dVol (2.4)

2.1.3 Actuation Efficiency

As being discussed in the previous chapter, the material coupling coefficient is not a good

measure to describe the efficiency of a device or a system, while actuation efficiency is a viable

metric. It is defined as the work out of the system divided by the work into the system

when working over a typical operation cycle. As mentioned before, work input is defined as

the electrical work, while work out is defined as the mechanical work. Therefore, actuation

efficiency is expressed as
_W t WM (2.5)

Wi WE
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Figure 2-2: Material and Structure Loading Line for the Linear Systems

2.2 Linear and Non-linear Systems

The motivation for looking into non-linear systems comes from the diagram showing the inter-

section of a material load line and a structure load line on a force-displacement diagram, shown

in figure 2-2.

The area under the structure 'load line from the origin to the intersection is the actual

mechanical work of the system. The area under the material load line is the total amount

Of energy available to do mechanical work. So if a structure load line, such as a curve, can

encompass more area under the material load fine before it intersect with the structure load

line, it is possible that more mechanical work can be done on the structure. Thus, the actuation

efficiency of the system will be increased. Such curves do exist and we can call them non-linear

loading functions, while the corresponding systems called non-linear systems. Two sample non-

linear loading functions are shown in Fig. 2-3. They are essentially the same functions defined

by Malinda for the purpose of comparison and discussion.

Linear loading function:

-- (2.6)
Fb Xfree
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Figure 2-3: Comparison of Linear and Non-linear Functions

Non-linear loading function 1:

Fb- -free (41 exp • 5sfee2 (2.7)
Fbi ree /

Non-linear loading function 2:

Fnon-iinear2  1 (tanh(6 (2.8)
Fbi 2 \XfreeJ

2.3 General Analysis

The object we are going to study here is a piezo actuator. The linear constitutive equations of

the piezoelectric are presented first, then the general actuator and sensor equations derived by

Hagood et al [Hagood, .1990] are introduced. The work terms are derived using the actuator

and sensor equations and then applied to one dimensional linear and non-linear cases.
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2.3.1 Linear Constitutive Equations

For small stresses and electric fields, piezoelectric materials follow a linear set of governing equa-

tions which describe the electrical and mechanical interaction of the materials. The equation

can be expressed as

{ (2.9)

These equations have four system states: T, the stress in six directions; E, the electric

field in three directions; S, the strain in six directions; D, the electric displacement in three

directions. The materials constitutive relation is a nine by nine matrix. This matrix can be

reduced using either plain stress, plain strain assumptions, or by assuming one dimensional

relations. Most of the work in this document will be using one dimensional relations, which is

a two by two matrix.

2.3.2 Governing Equations for the coupled systems

The governing equations for the piezo active materials are the simplified actuator equation and

sensor equation for quasi-static cases, which can be expressed as [Hagood, 1990]

[ ~ -9 {fi}(2.10)

9i 1 cps V

Where KE is the stiffness matrix for the active materials; 01 is the electromechanical cou-

pling terms; Cps is the capacitance of the active materials under constant strain and xl, lI , fi

and Q1 are the displacement, voltage, force and charge vector respectively. Dynamic terms are

neglected since the tests were done quasistatically.

For the non-piezoelectric structure, force-displacement relation can be written as:

f. = kx8  (2.11)

Where k, is the stiffless of the structure and can be either linear or non-linear with respect

to x., the displacement of the structure.
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2.3.3 Compatibility and Equilibrium

The states of the structure and active material are related by compatibility and equilibrium

requirements.

Force equilibrium:

S= (2.12)

Compatibility:

X1- -X- X (2.13)

From equation 2.10 we have

gX 1 - = (2.14)

Substitute equation 2.12 and equation 4.21, we have

o'V1O- + - (2.15)

This is an implicit relationship between V and x. which is automatically satisfied during the

test. Therefore, this equation can be used to determine displacement of the active material when

a voltage is applied or for an expected displacement, the required voltage can be determined

by solving this equation iteratively.

2.3.4 Electrical Work

Electrical work is defined in equation 2.3.

From equation 2.10:

Q+ = X+GCV1  (2.16)

Substitute equation 2.15 into 4.18, we have

0Q- V1 CspV1 = +V (2.17)
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Then the variation of Q1 in terms of V4 can be expressed as

[ O +CS - Ol01V1  dk8 dx V1 (.
A +KE +  (k,+

k, + p1 KE)2 dV(2.18)

Substitute equation 2.18 into equation 2.3, we have the electrical work expressed as

__ OT1 _ 1 r5V
WE = V O1 1 + cps, V - T 1 1  k. dx J (2.19)JVo[ks + K +Cp1 - (ks + KE)2-d-d1J

2.3.5 Mechanical Work

Mechanical work is defined in equation 2.1, where

F = ksx (2.20)

Finding the variation of x using equation 2.15, we have

_ _ 01V dk8 d] 6V (2.21)

[ks + KPE (k8 + KE) 2 dx dVj

Substitute equation 2.20 and equation 2.21 into 2.1, we will have the mechanical work

expressed as
WM f ks 1 1V 1 V1  dkdx v (2.22)

wM= (kK + P12 k., + gk d dY

2.3.6 Actuation Efficiency

The actuation efficiency of the system is defined in equation 2.5, which is simply the ratio of

equation 2.22 to equation 2.19.
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2.4 One Dimensional Linear Systems

2.4.1 Expressions for Linear Systems

The systems discussed here has been shown in Fig. 2-1. For linear systems,

_k, =0 (2.23)
dx

And assume V0 = 0 and V = V1, equation 2.19 and equation 2.22 can be simplified and

expressed as

WE= V2( OIO +C1) (2.24)

2 k, oo +2.P)
WM=!V2 kOT1

1)2 (k, +CPS (2.25)

2.4.2 Constitutive Equations

The central axis of the actuator and structure is regarded as the 3-direction of the systems.

Linear material relations is used and constitutive equations 2.9 is simplified for one dimensional

cases. The one dimensional constitutive equations in 3-direction can be written as

{ S3  E 3 431 TI (2.26)

This equation can be rewritten to have strain as the free variable, then

{T3} [ -e33 (223

From equation 2.26 and equation 2.27 we can find the following relations

43 E (2.28)

e33 = d333 (2.29)
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633 633T - d33 (2.30)

2.4.3 Finding the Constants in Work Expressions

To find the constants in the work expressions, i.e. equation 2.24 and equation 2.25, The Ritz

method is used. Electrical and mechanical mode shapes , which satisfy the prescribed voltage

boundary conditions and the geometric boundary conditions of this specific problem respectively

are assumed as

'E Xl (2.31)
1P1

XiM (2.32)
1

The assumed mode shapes can be used to find C8, KE and 01 using the equation developed

by Hagood et al [Hagood, 1990

=, . NcENxdVl (2.33)

tpl

01= J N7jet Nvjd Vp (2.34)

tpl

1 f N.TesNvdVpl (2.35)
Ile33 lp d wp l

IApl
p1

CS ~ eN,,~p (355



For a one dimensional linear structure, we have

*A 8
ks= A(2.36)

2.4.4 Simplified Expressions for Electrical and Mechanical Work

Assume that the structure and the piezoelectric have the same effective length and the same

cross sectional area, then we have

A, = Ap1 = A (2.37)

18 = tP =I (2.38)

Substitute equation 2.33, 2.34, 2.35, 2.36, 2.37 and 2.38 into equation 2.24 and 2.25, we

will be able to find the simplified expressions for mechanical work, electric work and actuation

efficiency.

Mechanical Work

WM=IV2 c, ei21A 1 (ce (2.39)
wM=? V (3 +C,)2

Electrical Work 1A (s L +_ (.0

WE=2T 1(33 (2.40)

We can further simplify these two equations by taking advantage of the material coupling

coefficient expressed as

k2  - (2.41)
83333

And the relation expressed in equations 2.28, 2.29 and 2.30. Then the mechanical work and

electrical work will be

Mechanical Work

WM 12 T 3k +--)2 (2.42)
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Electrical Work
1Ag 22

WE 1V 3 1 0k 3 ) (2.43)
2 1  +a~ 1

Where
- -(

2.4.5 Actuation Efficiency

Actuation efficiency of the one dimensional linear system can be determined by equation 2.42

and 2.43, which is 2

Wo__ 3 (2.45)-Wi -1 -" '-k 2

-1-a 33

This expression is exactly the same as which derived by Giurgiutiu [Giurgiutiu, 1997] and

Davis [Davis, 1999] respectively, but we use a different approach here.

It can be shown mathematically that equation 2.45 has a peak at

a 1 (2.46)

And the maximum value is

77M (2.47)
(1+ 1 rj)2

2.4.6 Discussion on Actuation Efficiency

To better understand the expression we have derived here, actuation efficiency is plotted in

Fig. 2-4 with the impedance matched system efficiency by Hall and Prechtl, equation 1.2, for

comparison.

This figure shows that when material coupling coefficient is small, the actuation efficiency

correlates the impedance matched systems efficiency. However, when material coupling coeffi-

cient is significantly large, there is a big difference between the two due to higher electromechan-

ical coupling. In addition, the peak value of the actuation efficiency occurs at a stiffness ratio

larger than one, while the impedance matched system efficiency always occurs at the impedance

matched condition.
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Figure 2-4: Comparison of Actuation Efficiency of Linear Systems with Different k33

The relations of peak actuation efficiency and the corresponding stiffness ratio with the

material coupling coefficient is illustrated in Fig.2-5.

2.5 One dimensional Non-linear Systems

2.5.1 General Analysis

In genaral, we can not find a close form solution for mechanical work and electrical work in

terms of V1, the applied voltage to test sample. For the convenience of analysis, we can use

equation 2.20 and equation 2.36 to rewrite the non-linear functions, equation 2.7 and 2.8, in

the following form:

f k coc.A, (2.48)
18

Where co is a constant independent of x, and c. is the non-linear part of the stiffness.

For nonlinear function 1:

cx = 41 exp (s) 2 (2.49)
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Figure 2-5: Max. Actuation Efficiency vs. ka for 1D Linear Systems

For non-linear function 2:

x \ k ah\xr-e

If we substitute equation 2.49, into equation 2.15, for example, we will have

x ---5 a/' a (2.51)

It is obvious that there is no close form solution for x in .terms of V1. Therefore, we can not

find close form solutions for mechanical work and electrical work for such non-linear systems by

simply substituting equation 2.51 in to equation 2.19 and equation 2.22. To find a close form

solution, we need to express mechanical and electrical work in terms of the displacement of the

active materials.

2.5.2 Mechanical and electrical Work in terms of Displacement

Electrical and mechanical work is still the same as defined in equation 2.3 and equation 2.1.
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Mechanical work

WM ksxdx (2.52)
XO

Electrical work

WE = VdQ1 (2.53)

From equation 2.15, we have k8 + KE

Vl - +  x (2.54)
01

Substitute equation 2.54 into 4.18, we have

Q=k= +K x (2.55)

Then the variation of Q1 in terms of x can be expressed as

dQ1 =-[6-T + Cv1 (k. + Kp-E) C .1 dA, ] dx (2.56)

Substitute equation 2.54 and equation 2.56 into equation 2.53, we have

Pik+Kj [ VIc ±-3
WE f X. + CA (k,, + K)J dx (2.57)

2.5.3 Simplified Expressions for Mechanical and Electrical Work

As we have done for linear systems, we also need to assume mode shapes for the non-linear

systems so as to find the material constants in equation 2.52 and equation 2.57. Here we assume

the same electrical and mechanical mode shapes as in linear analysis. Therefore, we can simply

substitute equation 2.33, 2.34, 2.35, 2.37, 2.38, and k, - ' from 2.48 into equation 2.52

and 2.57, and obtain

Mechanical work

WM = lce cxxdx (2.58)
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Electrical work

WE + ac,)x +e 3  (1 + acx)2 xdx + (2.59)

__A _(2.60)
1 edx

Again we can further simplify the expression by utilizing equation 2.41, 2.28, 2.29 and 2.30.

Then, the final expression for electrical work can be written as

WE = "  '(1+ acx) xdx + 1 k- (1 + acx)2 xdx + (2.61)

+2 (a (1 +) Lf +aqc)xX-2 (2.62)

Where

a- CO (2.63)
* C33

Now if we substitute equation 2.49 or equation 2.50 into 2.58 and 2.61 respectively, we can

obtain the close form solutions for mechanical work and electrical work for these two cases.

However, the solutions are very long and it is much easier to evaluate the integrals numerically.

Even though, it is still more convenient to use equation 2.58 and equation 2.61 rather than use

2.22 and 2.19.

2.5.4 Actuation Efficiency

Similarly, the actuation efficiency of one dimensional non-linear systems can be found by divid-

ing equation 2.58 with equation 2.61.

2.6 Comparison of Linear and Non-linear Systems

Assume the stiffness of both the active materials are one and the material coupling coefficient is

0.75. Mechanical work, electrical work and actuation efficiency of both the linear and non-linear

systems has been shown in Fig. .2-6 and Fig. 2-7.

It is obvious that the work output and actuation efficiency of the non-linear systems is much

higher than that of the linear system. For non-linear system 1, the actuation efficiency is almost
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doubled, while the work output is almost tripled.

2.7 Summary

Equations for the electric work, mechanical work and actuation efficiency for both the one

dimensional linear and non-linear systems have been derived.

For linear systems, the analysis has shown that when material coupling coefficient is small,

the actuation efficiency correlates the impedance matched systems efficiency. However, when

material coupling coefficient is significantly large, there is a big difference between the two due

to higher electromechanical coupling. In addition, the peak value of the actuation efficiency

occurs when the stiffness ratio is larger than one, while the maximum impedance matched sys-

tem efficiency always occurs at the impedance matched condition. The maximum actuation

efficiency of the linear systems can be increased significantly when the material coupling coeffi-

dent of the active materials become large. For a given active materials whose material coupling

coefficient is a constant, the stiffness of the structure should be carefully chosen to maximize

the actuation efficiency of the system.

It has also been shown theoretically that the work output and actuation efficiency of the

non-linear systems is much higher than that of the linear system. For non-linear system 1, the

actuation efficiency is almost doubled, while the work output is almost tripled
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Chapter 3

Renovation on the Existing

Component Testing Facility

A component test facility has already been designed and built previously by Lutz [Malindal,

1999] in order to verify the theoretical derivation of the mechanical, electrical work and ac-

tuation efficiency for both linear and non-linear systems. The picture in Fig. 3-1 shows the

compressive component testing machine. However, due to some mechanical problems, force and

displacement or the mechanical work from the active materials can not be measured accurately

which necessitates a renovation on the tester. For a basis of discussion, the existing component

tester is briefly introduced and the remaining problems are discussed, then the new design is

presented and validated.

3.1 The existing Component Tester

3.1.1 Design Requirements

The main design requirements for this tester include:

] providing uniaxial testing with load application up to 8900 N and programmable im-

pedances with a force resolution of 100 mN;

0 To provide closed-loop testing capabilities at frequencies up to 1 KHz
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Figure 3-1: The Original Component Testing Facility

[ To provide a testing facility that accommodates samples 0-120 mm long

U To provide the capability to perform 'free strain' and 'blocked force' tests

0 To compensate for non-parallelism in the sample faces

[I The ability to test most kinds of piezoelectric, electrostrictive, magnetostrictive and shape

memory materials

3.1.2 Main Features of the Component Tester

The component tester actually built satisfies some of these requirements, such as loading ca-

pability and frequency range. The mechanical part consists of a large scale linear positioning

system, which can provide preload to the sample, and two sets of driving piezo stacks, which

can be chosen according to the applications. An alignment mechanism has been designed to

compensate for the bending effect during the test. All the tests are controlled through the

National Instrument/Labview data acquisition system. The feedback control of the systems

mentioned above have also been implemented in Labview.

Specifications for some of the key components are listed below for reference:

U Preload: Flexline linear positioner, up to 20 kN.
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O Optical displacement sensors: MTI 2000, range 0.127-0.510 mm, resolution 25 m, fre-

quency up to 20 kHz.

0 Entran load cell: 13.35 KN, resolution 4.5 N, frequency up to 700 Hz

0 Kistler load cell: 22.250 KN, resolution 4.5 N, frequency up to 3000Hz

[0 Trek amplifier Model 609 D-6, output voltage range 0 to ±4 KV, DC or peak AC; output

current range 0 to 20 mA, DC or peak AC; voltage monitor ratio 1V/1000 V, accuracy

0.1% of full scale; current monitor ratio 1V/2 mA, accuracy 0.5% of full scale.

[] Amplifier for Driving Stack +800 V, -800 V or ±400 V.; 1 A per channel, 1.5 A peak.

[ Driving stacks: Data shown in Table 3.1 below.

Small Stacks Large Stacks
Max. Displacement (no load) 78.74 m 182.88 m

Stiffness 105.64x10 6 N/m 45.20x106 N/m
Capacitance 1.28 F 3.00 F

Diameter 30.86 mm 30.86 mm
Overall Length 97.28 mm 184.15 mm

Table 3.1: Driving Stack Parameters

3.2 Previous Test'Results

3.2.1 Material Properties Measurement

Material properties of piezo stacks such as open circuit stiffness, short circuit stiffness, dielec-

tric constant and electromechanical coupling terms are required in the theoretical prediction

of the mechanical and electrical work and actuation efficiency. The correct measurement of

these properties is also a good validation of the methods used for the measurement of basic

parameters including displacement, force, current and voltage. These basic parameters are the

key parameters for acquiring mechanical and electrical work experimentally.

The test sample chosen is Sumitomo stack MLA-20B. The tested properties measured by

Lutz [Malindal,1999], are listed in Table 3.2 below.
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Units Ave. Value Max. Value Max.Value
Elastic constant 10-12 m2 /N 31.3 34.5 27.5

Dielectric Constant eT/ A0 4015 4818 3215
Electromechanical coupling 10 - 12 m/V 785 824 746

Table 3.2: Sumitomo Stack Parameters

Method of Coupling Coefficient Data
Obtaining Value k32 Label

Bulk Material 0.72
Measured Stack Resonance 0.44

max 4s max 3TE max d33  0.675 Theory 1
3in n in e3 min ds3 0.843 Theory 2

mean A mean eT3  mean d33  0.745 Theory 3
M Sx max CT min d3s 0.611 Theory 4
mm s33 mi en max d33  0.932 Theory 5

Figure 3-2: Determination of k33 for Sumitomo Stack

From table 3.2, we can see that the material properties actually could not be measure

accurately. For this reason, the material coupling coefficient could not be determined accurately

either. Different combination of the data listed in Table 3.2 had to be used to find a better

estimation of the material coupling coefficient, which is shown in following Fig. 3-2 [Malindal,

1999].

The k33 estimated in this table varies from 0.44 to 0.932 which has a difference of more

than 100%. It is obvious that the mechanical work and electrical work can not be predicted

accurately.

3.2.2 Linear Test Results

The mechanical work, electrical work and actuation efficiency of the linear tests is shown in

Fig. 3-3, Fig. 3-4 and Fig. 3-5 respectively [Malindal,1999]. Theory 1 to Theory 5 represents

the five theoretical predictions using the five different estimated k?3.
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Figure 3-3: Mechanical Work vs. Stiffness Ratio a for Linear Systems

Figure 3-4: Electrical Work vs. Stiffness Ratio a for Linear Systems
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Figure 35: Actuation Efficiency vs. Stiffness Ratio a for Linear Systems

3.2.3 Nonlinear Test Results

No much data was obtained for non-linear tests [Malindal,1999]. The actuation efficiency

comparison for linear and non-linear systems is shown in Fig. 3-6.

Form the figures shown above, it is obvious that the experimental data do not match the

theoretical prediction.

3.3 Analysis of the Problems

The accurate measurement of electrical and mechanical work is the basis for the comparison

of theoretical prediction and experimental data. From previous discussion we know that the

theoretical prediction could not be made accurately because of the bad material property data.

This actually implies that the mechanical work and electrical work could not be measured

accurately either since the basic parameters required are the same, such as current, voltage,

displacement and force.
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The time trace of a representative test is shown in Fig. 3-7. It is obvious that the data

is unaccessible, which could be one of the reasons for the mismatch of electrical work from

prediction and experiment.
Frm this figure, we can also find that the length of the test is 20 seconds, using half a sine

wave. The driving frequency of the test is then 1/40 Hz, i.e. 0.025 Hz. The applied voltage to

the sample is 200 V, which can also be seen from the figure. The nominal capacitance of the

Sumitomo stack MLA-20B is 800 nF at free condition. Rom these data we can estimate the

magnitude of the current in the systems which is:

I = 2 fVF (31)

= 2 x 3.14 x 0.025 x 200 x 800 x 10- '3

= 0.025 mA

Tfhe current magnitude computed is so small that it is far below the lowest value of an

accurate measurement for the current monitor of the Tek amplifier, which is about 0.5% x 20=
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Figure 3-7: Time Trace of from Previous Test

0.1 mA. This value can be found from the specification of the Trek amplifier listed before. The

current measurement problem could be solved by simply increasing the test frequency so that

the current magnitude is high enough for the current monitor. However, the driving frequency

is actually limited by the capability of the control system of the tester. An improvement in

the control method should be made to guarantee an better current measurement. This will be

demonstrated later in this chapter. The voltage measurement should have no problem and this

will be demonstrated later too.

3.3.2 Mechanical Work Measurement

The mechanical work measurement seemed to be a very difficult problem. To get an idea of

the displacement and force measurement accuracy, stiffness of an Aluminum bar was measured

first.

Aluminum Bar Stiffness Measurement

The Al bar measured has a length of 0.0832 m, diameter of ¢ 0.008 m and the theoretical

stiffness of it is 4.229 x 107 N/in. The Aluminum bar was placed on the different locations
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Test 1 Test 2 Test 3
Align. No Align. Align No Align. Align No. Align.

Kis.107 N/m 2.3001 2.3110 3.2283 4.5397 2.0136 3.7400
Ent. 107 N/m 1.9266 1.9350 2.9663 4.0373 1.6331 2.600

Table 3.3: Al Bar Stiffness Measurement

on the sample plate of the tester. The test were done under two conditions: testing with the

alignment mechanism or without the alignment mechanism. When tested with the alignment

mechanism, the stiffness of the Al bar should be

1 (3.2)

The displacement of the Al bar was measured by the MTI Fotonic sensors, and force was

measured by both Entran and Kistler load cells. The results are listed in Table 3.3.

It was obvious that the stiffness measured did not match the theoretical value when tested

without the alignment mechanism. The alignment mechanism was designed to remove the

bending effect during tests, however, the .data measured with the alignment mechanism was

questionable also. In addition to the Aluminum bar stiffness measurement, several plastic bars

were measured and the data was also unaccessible, which has been shown in Fig. 3-8.

This necessitated the accurate stiffness measurement of the alignment mechanism.

Alignment Mechanism Stiffness Measurement

The alignment mechanism is shown Fig. 3-9. It consists of two circular plates connected by

a thin bar which is designed to compensate for the un-parallelism of both the test sample and

the champing plates.

The stiffness of the alignment mechanism measured was unexpected which showed a stiffness

change with respect to the preload applied on it. Fig. 3-10 shows the results.

Cage Assembly

Besides the problem of the alignment mechanism, the cage assembly caused some problems also.

The cage assembly was designed and built for two purposes mainly. First the cage provides the

capability of transferring load from the driving stacks to the test sample, and the convenience
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Figure 3-8: Stiffness of PETI-1 vs. Applied Preload

Figure 3-9: The Original Alignent Mechanism
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Figure 3-10: Stiffness of the Alignment Mechanism vs.Preload

for the displacement measurement of the sample. The load was transferred through two thin

flextures. Second, the cage provides the protection of the loading and testing systems in case

of serious misalignment. This was done by reinforcing the loading and testing systems through

this cage mounted on the four rods. A picture of the cage assembly is shown in Fig. 3-11.

It was found, however, the stiffness of the flextures, and the friction between the rods and

the bushing of the cage was too high. In addition, test sample was placed on one side of the

cage and the load cells for force measurement were all placed on the other side of the cage.

This made it very hard to determine the accurate displacement of the sample and the actual

load on it.

Other Considerations

In addition to the problems discussed above, the MTE probes caused some problems also. MTI

probes were used to measure the displacement of the test sample when it was actuated. However,

it was difficult to get repeatable displacement measurements for the same test at the beginning.

This turned out to be caused by problems in calibrating the MTI probes, such as finding the

peak value. The MTI probes has to be calibrated very carefully.
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Figure 3-11: The Original Gage System for Load Transfer and Protection
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Another remaining problem is the different force measurement from Entan and Kistler

load cell as shown in Table 3-3. The measurement from Kistler is very reliable which will be

demonstrated -later in this chapter. The difference is caused by Entran load cell which is a

strain gauge type load cell which needed to be calibrated every time before it is used.

From the discussion above, we can see that the alignment and the load transferring device

of the component tester should be improved or replaced. Some modification on the existing

cage could not guarantee the improvement of performance, therefore, a new design was made

and built to replace the cage assembly.

3.4 Re-design of the Load 'Transfer Device

3.4.1 Initial design

The objectives of this design was to replace the cage assembly and the alignment mechanism

for accurate force and displacement measurements and safe tests. As a result, the alignment

mechanism was replaced by the spherical joint connection between different mechanical parts,

and the cage assembly was replaced by a linear bearing system. For a protection of the loading

system, the bearing system was mounted on a plate which again was mounted on the four rods.

A schematic view of this design is shown is Fig. 3-12.

From the figure we can see that the Kistler load cells (load cell) is on the sample side and

Entran load cell ( load cell 2) is on the other side of the linear bearing. The connection between

different parts are all spherical joints. In addition, the configuration of the loading systems can

be changed freely according to request because we have designed and built different connectors.

3.4.2 Vibration Measurement and Improvement on the Design

To validate this new tester configuration, Polytec CLV 100 Laser Vibrometer was used to

monitor the transverse vibration of the tester during test. The transverse vibration of different

parts of the tester were monitored one by one. The information obtained from the test sample

itself seemed to be more important. The transfer function of the test sample, a steel tube with

the similar stiffness as the piezo stack, is shown in Fig. 3-13.

From the transfer function we can see the peak at about 400 Hz as well as other peaks.
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Figure 3-14: Transverse Vibraton of Test Sample at Time 1

Figure 3-15: Transverse Vibration at Time 2

Pictures shown in Fig. 3-14 to 3-19 provides information in detail about the transverse vibration

of the test sample at this frequency.

Fig. 3-14 shows the picture for the transverse vibration at the peak frequency for a start

moment. The transverse vibration is more obvious when check the pictures in a timely order.

From this series of pictures, we could find that the left side of the sample had bad contact

with the damping plate of the tester. The lower left part of the sample vibrated much more

severely than that of the upper left part. This means that the misalignment of the sample with

the tester was larger than what the spherical joints could compensate for. For this reason, three

springs were mounted between the joint and the plate, where the linear bearing was mounted,

as shown in Fig. 3-20. The springs could provide enough preload to the sample so that the

position of the sample could be adjusted carefully before the driving system pressed on it.

Pictures of the new design are shown in Fig. 3-21 and Fig. 3-22. The improvement seemed
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Figure 3-16: Transverse Vibration at Time 3

Figure 3-17: Transverse Vibration at Time 4.

Figure 3-18: Transverse Vibration at Time 5

Figure 3-19: Transverse Vibration at Time 6
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Figure 3-20: Improvement on the New Design by Providing Springs for Preload

very effective because the transverse vibration was suppressed.

3.5 Validation of the New Design

The validation tests were conducted to verify the correct measurement of displacement, force

voltage and current or charge. The current and voltage validation is done by capacitance

measurement of standard capacitor, and the force and displacement validation was done by

stiffness measurement.

3.5.1 Stiffnaess Measurement

To measure the stiffness of sample correctly, the load cells, which measure force, and the Fotonic

sensors, which measure displacement were calibrated first.

Load Cell Calibration

The load cells, Kistler 9212 and Entran miniature, were compared with the standard load cell

of the Instron testing machine, Kistler 9300. The results showed a very good match while the

calibration of the kistler load cell was adjusted to be 100 N/V and that of the Entran load
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Figure 3-21: New Design of the Load Tansfer Systemsl

Figure 3-22: New Design of the Load Transfer System 2
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Figure 3-23: Overall View of the New Tester
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Figure 3-24: Force Calibration for the New Design

cell was 1570 N/V. The comparison is shown in Fig. 3-24. In this figure, channel 2,3 and 4

represents Kistler 9300, Kistler 9212 and Entran miniature respectively.

Fotonic Sensor Calibration

The displacement of the two Fotonic sensors, also called MTI probes, were compared with each

other first. Then the displacement of a sample measured by the two Fotonic sensors (differential

displacement) and strain gauges was compared. The results were comparable as seen in Fig.

3-25 and Fig. 3-26.

Stiffness Measurement

The sample used for the stiffness test was a steel tube: 012.65 mm x 0.15 num x 101.55

mm. Three equally spaced strain gages were bonded on the outer surface of the sample. The

measured stiffness by the strain gages and the Fotonic sensors was compared in Fig. 3-27. The

Kistler load cell was used to measure force.

The stiffness measured by strain gages and Fotonic sensors are very close as can be seen
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from the figure: 57.440x10 6 N/rn and 59.135x10 6 N/rn respectively.

3.5.2 Capacitance Measurement

The capacitor used for this test was a standard capacitor with a nominal capacitance of 800

nF, which was close to the capacitance of the Sumitomo piezo stack. The capacitance was

determined by

Q =CV (3.3)

Where Q was determined by integrating current monitored by the Trek amplifier over time,

and V directly camne from the voltage monitor of the Tek amplifier. A set of representative

curves have been shown in Fig. 3-28.

As can be seen from the figure, the measured capacitance 791.39 nF has very good correlation

with the nominal value 800 nF ( 1% error). The test was conducted at a frequency of 10 Hz.

At this frequency and an applied voltage of 225 V, it is possible to compute the magnitude of
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Figure 3-28: Capacitance Measurement for Standard Capacitor

the current in the circuit using equation 3.1 as following:

I= 2 fVF

= 2x3.14x10x225x800x10
- 9

= 11.30 mA

This magnitude of current is well within the range of an accurate measurement as can be

seen from the figure. This proved out our suggestion made early about increasing the test

frequency for linear and non-linear tests.

3.6 Summary

The renovation and validation of the component tester has been presented. The status of

the existing component tester and the test results from it have been discussed. Both the

electrical work and mechanical work could not be measured accurately in those tests. The

poor electrical work measurement is caused by the low test frequency. The current magnitude

computed for a typical linear test done before is about 0.025 mA, which is far below the
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lowest value of an accurate measurement. The current monitor of the Trek amplifier is capable

of measuring a current as low as about 0.1 mA. The current measurement problem has been

solved by increasing the test frequency so that the current magnitude is high enough for accurate

measurements. This has been demonstrated by a capacitance test. When the test frequency

is raised to 10 Hz for a standard capacitor with a similar capacitance as the sample stack, the

computed magnitude of current is 11.30 mA, and the current signal is very clean. Capacitance

measurement of a standard capacitor (800 nF) has been used as a validation of the voltage and

current measurement method. The actual measured capacitance of this capacitor is 791.39 nF.

The poor mechanical work measured is caused by the load transfer systems, and the mis-

alignment during the tests. The cage assembly has been replaced by a linear bearing system,

while the alignment mechanism has been replaced by spherical joint connectors. A laser vibrom-

eter has been used to monitor the transverse vibration due to misalignment. An adjustment

mechanism has been applied for fine adjustment of the position of the sample stack. Stiffness

measurement of a steel tube has been chosen as the validation method for the force and dis-

placement measurement. Displacement has been measured using both the MTI probes and 3

strain gages on the tube, while the force is measured by the Kistler load cell. The stiffness of

which measured by the strain gages and MTI probes are very close which are 57.440x 106 N/m,

and 59.135 X10 6 N/m respectively.

As a conclusion, the renovation of the component tester is validated, and the measurement

methods for displacement, force, current and voltage are reliable.
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Chapter 4

One Dimensional Linear and

Non-linear Tests

In order to verify the theoretical prediction made in chapter 2, linear and non-linear tests were

to be conducted. In this chapter, the linear and non-linear test approach and test results will

be presented. The original feedback approach which was used by Lutz [Malindal, 1999] will

be examined and the problems. of this approach will be discussed, then a new test approach

proposed. The linear and non-linear test results will be compared and contrasted at the end of

this chapter.

4.1 FeedBack Test Approach

A feedback closed loop control method was originally chosen for the linear and non-linear

tests. The idea was to provide the capability of testing a sample against a programmable

impedance, either linear or non-linear. The input to this control loop is the displacement and

force information from the Fotonic sensors and the load cells. The output from this control

loop is the voltage level to supply to the driving stacks. For an assumed structure stiffness

or impedance, the voltage level to the driving stacks is determined first by detecting what the

desired change of force in the system is, then finding the corresponding change in electrical field

to satisfy this requirement. This is analogous to finding a root of an equation using iteration

method.
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Figure 4-1: Time Trace for Linear Test at 0.05 Hz, Assumed Stiffness 3000 lbs/in

To do the linear and non-linear tests planned successfully, it is important to determine

whether to use feedback close loop control or other methods. From the discussion in the last

chapter, it has been demonstrated that increasing the test frequency could solve the problem

of a noisy current signal. To verify this assumption for linear or non-linear tests, some tests

have been done on the component tester before it was renovated. The renovation on the tester

was mainly for improving force and displacement measurement. Renovation did not influence

the current and voltage measurement at all since these two parameters were obtained from the

current and voltage monitors of the Trek amplifier. Therefore, the linear tests should still be

valid for checking current and voltage measurement. Some of the test results have been shown

in the following figures. The test frequency has been increased form 0.05 Hz to 10 Hz.

The input signal for these tests was half a sine wave. From Fig.4-1, Fig4-2 and Fig.4-3 we

can see that at 0.05 Hz and 1 Hz the current signal is noisy as predicted, however, the system

becomes unsteady at 10 Hz, thereby making the situation worse.

A MATLAB simulation of the process for the feedback controller to determine the voltage

level for the driving stacks according to the applied voltage to the sample stack has been
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conducted. A given sine wave was applied to the sample stack for an assumed structure stiffness.

The input sine wave signal (one cycle) was represented by 2000 points for accuracy. The

objective was to find the sine wave signal to the driving stacks represented by another set of

2000 corresponding points using iteration method. The simulation has shown that the computer

requires about 25 minutes to find the 2000 corresponding voltage value. If reducing the points to

100, it still need about 150 seconds. However, to drive the test at 10 Hz, for example, requires

the computer to find the 100 points or 2000 points within 0.1 seconds. This is a probable

cause for why the system goes unsteady when testing at 10 Hz. A different method should be

considered for successful linear and non-linear tests.

4.2 FeedForward Test Approach

From the discussion of the last section, it is unlikely to determine the drive voltage for the

driving stacks using feed back controller. A possible solution is to solve for the driving voltage

in advance, which leads to the feed forward open loop control method. The principle of this

method has been shown by the block diagram in Fig. 4-4.

From Fig.4-4, it was seen that a Voltage-Force model is required to compute the voltage to

the driving stacks. The material properties of the test sample Sumitomo stack are also needed.

The non-linear functions shown in this figure could also be linear functions. An easier way to

perform the linear tests will be shown later in this chapter.

4.3 Material Properties of Test sample

The material properties of the test sample Sumitomo stack is required not only in theoretical

prediction, but also in defining the linear and non-linear functions, determining the voltage-

displacement relation and establishing the Voltage-Force model. The methods used to measure

the material properties in this section are those methods validated in Chapter 3.

4.3.1 Test Sample Physical Parameters

The test sample chosen is the Sumitomo stack MLA-20B. for comparison with the data obtained

by Malinda. The physical parameters are shown in Table 4.1
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Figure 4-4: Feedforward open loop test approach

Total Length mm 41
Active Length nun 37
Section Area mm2 23.4
Layer Thickness mm 0.18
Number of Layers 2001
Max. Applied Voltage V 250

Table 4.1: Sumitomo Stack Physical Parameters
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4.3.2 Stiffness and Elastic Constants

The stack stiffness test were performed on the component tester. The sample was placed on

the clamping plate, then pressed and held by the three springs. The position of the stack was

carefully adjusted to make sure it had a good contact with the clamping plates. After that, a

preload was applied to the stack gradually while the Entran load cell was used to monitor the

increase of the preload. The preload was maintained to be around 150 N and this preload was

used for all of the tests including both the linear and nonlinear tests for the Sumitomo stack. It

was found that preload had some influence on the test results and it was necessary to minimize

it.

The tests were done through the actuation of one long stack in the loading systems. This

configuration was kept through out all the tests including linear and non-linear tests. The

driving signal to the driving stack was a sine wave with a frequency of 10 Hz and voltage level

of 160 V, 200 V or 240 V. The Sumitomo stack was tested at both open circuit and short circuit

conditions. kD and kE were found through the ratio of force to displacement measured, while
sD and sQ were found from the following equations:

D -A A3 (4.1)

and

s3 kA (4.2)

The measured value for k 106 N/m have been shown in Table 4.2, where Test 1, 2, 3 indict

that the driving voltage of the driving stack is 160 V, 200V and 240 V respectively, and it was

the same in the tables for SD, KE and S E . Measured Value for SD 10-12 m 2/N, kI 1012

N/m and S E 10-12 m 2 /N has been listed in Table 4.3, Table 4.4 and Table 4.5 respectively.

Typical time trace and force-displacement relation curves are shown in Fig.4-5 and Fig. 4-6.

4.3.3 Capacitance and Dielectric Constant

The capacitance of the Sumitomo stack was measured in the same way as the standard capacitor

was measured in Chapter 3. Here the Sumitomo stack was placed on a support to restrain it
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_ kD 106 N/m
Thst1 39.983 39.996 40.024 40.039 40.051 39.974 40.086 39.865

Test2 41.107 40.988 41.049 41.058 41.077 41.094 41.015 41.125
Test3 41.749 41.635 41.654 41.708 41.712 41.727 41.747 41.763
Average 40.924

Table 4.2: Sumitomo Measured Stiffness at open Circuit,

S. 10 - 12 m 2 /N

Testl 15.865 15.835 15.812 15.801 15.795 15.791 15.821 15.777
Test2 15.385 15.430 15.407 15.403 15.396 15.390 15.378 15.420
Test3 15.148 15.190 15.183 15.163 15.162 15.157 15.149 15,143
Average 15.458

Table 4.3: Sumitomo Stack Measured Compliance st Open Circuit

kE 10-12 N/m

Testl 20.872 20.904 20.914 20.930 20.949 20.955 20.935 20.972
Test2 20.865 20.885 20.899 20.913 20.931 20.932 20.950 I 20.953

Test3 20.884 20.932 20.970 20.968 21.007 21.027 21.037 21.052
Average 20.943

Table 4.4: Sumitomo Stack Measured Stiffness at Short Circuit

S, 10-12 m 2 /N

Testl 30.301 30.255 30.239 30.216 30.188 30.180 30.210 30.155
Test2 30.311 30.282 30.261 30.242 30.216 30.214 30.188 30.183
Test3 30.282. 30.214 30.158 30.162 30.106 30.078 30.063 30.041
Average 30.198

Table 4.5: Sumitomo Stack Measured Compliance at Short Ciucuit
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Figure 4-7: Time Trace of Current and Voltage for Capacitance Measurement

at either ends, while different levels of voltage were applied to it, while the current signal going

to the stack was measured. The current measured was integrated over time to find the charge

value which was then used to find capacitance as described by 3.3.. The driving frequency was

10 Hz and the signal used as input to the 'rek amplifier was

VaPPI 1V sin(20 t) + 1 (4.3)

Where V., ranges from 25 V to 225 V.

The dielectric constant under constant stress can be found from the measured capacitance

for the stack. The equation used to determine 3is

T CTtI (4.4)4-AN

The measured capacitance and dielectric constant have been shown in Table 4.6. and the typical

representative time trace curve and voltage-charge relation is shown in Fig. 4-7 and 4-8.
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C nF 1004.0 1008.0 999.79 999.37 1022.7 1013.8 1001.2
C Ave. 1006.98 nF

ejq 38730 F/rn
e 3 f 4376.3

Table 4.6: Measured Capacitance and Dielectric Constant for Sumitomo Stack
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Figure 4-9: Time Trace of Displacement and Voltage for Stack d33 Measurement

4.3.4 Electromechanical Coupling Term

The test for measuring the electromechanical coupling term was similar to the capacitance

measurement test. The driving frequency used was 10 Hz and the applied voltage to the driving

stack was the same as shown in 4.3. Current and voltage was monitored in the same manner.

The difference between the two tests was that the actuator was placed on the support and held

in a horizontal position, while two Fotonic sensors were used to measure the displacement of

the Sumitomo stack during actuation. The electromechanical coupling term was found using
the following equation.

d33 =(4.5)

The measured electromechanical coupling term was shown in Table 4.7. and the typical

representative time trace curve and voltage-displacement relation is shown in Fig. 4-9 and

4-10.
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Figure 4-10: Displacement vs. Voltage for Stack d33 Measurement

4.3.5 Material Coupling Coefficient

The material coupling coefficient can be determined based on the material properties which

have be measured using equation 1.1. The computed the material coupling coefficient k33 for

Sumitomo stack was 0.6928.

4.3.6 Material Properties Summary

The measured material properties are summarized in Table 4.7. The accuracy of the measured

material properties of the Sumitomo stack can be examined through the equation which related

8 D and SE:

8 D . E - dt(c)-'d (4.6)

For one dimensional systems, equation 4.6 can be simplified as

= 8E - d T ( - 'd3a (4.7)
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Specification Measured Value
Stiffness k' 10' N/m 20.934
Stiffness kD 106 N/m 40.924
Elastic Constant s 10-12 m2/N 30.198
Elastic Constant s3 1012 m2/N 15.458
Capacitance nF 800±20% 1006.98
Dielectric Constant TTe .3570 4376.3
Electromechanical Coupling d3 3 1012 r/V 778 728.987
Material Coupling Coefficient k3 0.6928

Table 4.7: The Measured Material Properties for Sumitomo Stack

Substitute the material properties listed in Table 4.7, we can find SD:

D 30.198 1012 (728.987 x 10-12)2

4376.3 x 8.85 x 10- 12

- 16.477 x 10 - 12

There is only a 6% error between the computed S3 and the measured SD in the table.

4.4 Actuating Voltage for Test Sample

4.4.1 Linear and non-linear Functions

With the material properties of the Sumitomo stack measured, it is possible to rewrite equations

2.6, 2.7 and 2.8 for the convenience of analysis. The three loading functions can be written in

the form of equation 2.48:

f,, = (4.8)

fni=ak .41x exp 5.45 \x ) (4.9)

fn, 2 = PI "0.5xfreetanh (66 x) (4.10)
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Figure 4-11: Linear and Non-linear Functions in terms of Displacement of the Actuator

And the material load line can be written as:

fmaterial = kpiXfree 1kO~Ex (4.11)

Where a is the stiffness ratio,which is the same as in equation 2.44 and 2.63. xf, is the

maximum free displacement of the Sumitomo Stack, which can be expressed as

Xfree Vmaxd l (4.12)
tt

The new linear and non-linear loading functions in terms of displacement have been shown

in Fig. 4-11.

4.4.2 Actuating Voltage for Sumitomo Stack

The actuating voltage is not an important parameter for linear tests as long as the voltage is high

enough for accurate current measurement. However, from the Fig. 4-11, we can.see that the

initial stiffness of the non-linear functions shown is very high. In order to allow the Sumitomo
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stack to do more work under non-linear conditions than it could under linear conditions, the

actuator should overcome this initial stiffness, and approach the maximum displacement or the

displacement at balanced conditions, which are at the intersections of the material line and

linear or non-linear loading lines. From the coupled analysis, however, we have found that the

maximum displacement the actuator could approach is determined by the actuating voltage of

the actuator.

To determine the actuating voltage for the test sample actuator, voltage-displacement rela-

tion from the coupled analysis as expressed by equation 2.15 was to be written in a convenient

form. k8 for the linear and non-linear functions can be found by dividing the right hand side

of equation 4.8, 4.9 and 4.10. Substitute these stiffness terms and the coefficients terms in KE

and 01 expressed by equation 2.33 and 2.34, the new expression of the voltage-displacement

relation for the linear and non-linear cases becomes:

Linear function:
V 1 + t (4.13)

4331

Non-linear 1:
1 + 41a exp -5.45 0.5

V = \re (4.14)

Non-linear 2:

y + d2ea ti (4.15)

For a = 1, the voltage-displacement relations for different loading functions are shown in

Fig. 4-12.

A close check of the voltage-displacement curve of non-linear function 1 has shown that

the voltage should be higher than 235 V for the actuator to overcome the initial stiffness and

generate large enough displacement. A higher voltage, however, is too close to the maximum

allowed voltage of the actuator and could destroy the actuator. For non-linear function 2 this

voltage can go lower, while for linear functions, it could go even lower. However, for the purpose

of comparison of the linear and non-linear systems, we should drive the actuator at the same

magnitude of voltage. 235 V has been chosen as the magnitude of test sample actuating voltage

for all of the actuation tests in this research. As discussed in the stack material properties
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Figure 4-12: Voltage vs. Displacement from Coupled Analysis

measurement, an offset voltage was applied to the actuator to prevent the driving voltage from

being negative, which may depolarize the sample. The applied voltage to the test sample, the

Sumitomo stack, has been determined as

V1=235 (!sin (20 t+2- )+ ) (4.16)

4.5 Voltage-Force Model

From the feed forward approach diagram shown in Fig. 4-4, it is obvious that an accurate

Voltage-Force Model is critical in determining the driving voltage for driving stacks from the

required force in the system. The model has been developed in the same way as that of the

coupled analysis was develpoed in chapter 2. However, here there are three components instead

of two: the test sample piezo stack, the structure (connectors and load cells), and the driving

piezo stacks. The system is shown as in Fig. 4-13.
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Figure 4-13: Three Component System for Voltage-Force Model

4.5.1 Model Development

The method used for the model development is the same as that used for the coupled analysis

derived in Chapter 2. The governing equations for the piezo active materials are the simplified

actuator equation and sensor equation for quasi-static cases as in Chapter 2.

For the sample stack, the equations are exactly the same as equation 2.10. For the conve-

nience of discussion, they are listed here again:

For the driving stack, they can be expressed as

[ 2 -02 X }{f2} (4.18)

For the structure, it can be expressed as

ksx =f, (4.19)

The force balance equation in the system is given by:

fl= f2 =f (4.20a)
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The compatibility equation is given by:

xl = - (x2 + xs) (4.21)

From equation 4.17, 4.18, 4.19, 4.20a and 4.21, we can find out that

K KE (4.22)

Assuming the same mechanical and electrical mode shapes as described by equiation 2.31

and 2.32, we can find the coefficients in equation 4.22 using the same equations as shown in

2.33 and 2.34. Then the force model can be written as

d3 3piV1 + d33p2V2
f __+1 - (4.23)

Where d33pl d = - is the effective electromechanical coupling terms for the Sumitomo stack3tj

and d33p2 is that of the driving stack. From this equation we can see that if all the stiffness

terms and the d33p2 are determined, we can find the driving voltage V2 according to the sample

voltage V and the force in the system f. However, there are two problems which make it

difficult to for us predict the driving voltage accurately using equation 4.23. First, this model

is developed based on a simplified three component systems, assuming the system is clamped

at both ends. Actually this is not true and there will be some displacement at both ends. An

accurate model should include a few more springs in series or in parallel. Second, the three

unknown coefficients in equation 4.23 should be measured accurately. Even if this has been

done, the developed model still needs to be verified experimentally. For these considerations,

we will determine the model in the form of this equation directly from experiments. This has

been proven to be a very effective way.
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4.5.2 Experimental Determination of model coefficients

The Voltage-Force expressed in equation 4.23 can be written as

f = aV1 + bV 2  (4.24)

where a and b are undetermined.

The two coefficients were determined in two steps. First, the test sample was actuated, while

the driving stack was at constant electrical field, i.e. V2 = 0. The magnitude of the applied

voltage to the test sample varied from a small voltage to its maximum, while the force in the

system was recorded. The coefficient a was found from the linear fit of the peak V, vs. peak f

relation. Second, both the sample stack and the driving stack were actuated to find coefficient

b using the determined a. Since it was determined that the magnitude of test sample actuating

voltage would be 235 V for all tests, the voltage expressed by equation 4.16 has been applied

to test sample. The voltage applied to the driving stack is in the same form as expressed by

equation 4.16, while the magnitude of the voltage varied from the lowest to the highest. The

phase and frequency of the applied voltage to sample stack and driving stack were all the same.

The frequency was 10 Hz with a phase difference of zero.

The experimental voltage-force relations are shown in Fig. 4-14 and Fig. 4-15. The experi-

mental determined Voltage-Force Model can be expressed as

f = 2.1394V1 + 1.38591V2 (4.25)

4.6 Theoretical Predictions for systems driven by Sumitomo

Stack

With the material properties measured, actuating voltage and frequency chosen and the Voltage-

Force Model determined, it is possible toperform the linear and non-linear tests. The theoretical

prediction of the electrical and mechanical work and actuation efficiency of the systems driven

by the Sumitomo stack can provide some information for comparison. The linear and non-

linear functions used are the same as those expressed in equation 4.8, 4.9 and 4.10. The driving
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Figure 4-16: Prediction of Mechanical Work for Systems Driven by Sumitomom Satck

frequency for both the sample stack and the driving stack was 10 Hz and the actuating voltage

of the sample stack was the same as expressed in equation 4.16. The stiffness ratio a is assumed

to be 1. The results have been shown in Fig. 4-16, Fig. 4-17 and Fig. 4-18.

From these figures, we can obtain the similar information as was done in chapter 2. However,

the system discussed here is real and the material properties used are measured. The mechanical

work out of non-linear systeml is about 254% that of linear system, while the actuation efficiency

of non-linear 1 is about 200% that of linear systems.

4.7 Linear Tests

As mentioned early, the linear tests have been done in a relatively easier way than the non-

linear tests. Voltage was applied to both the sample stack, the Sumitomo stack, and the

driving stack. The phase and the frequency of the applied voltage for the two stacks was all the

same. The frequency chosen was 10 Hz and the phase difference was zero. The applied voltage

to the sample stack was expressed by equation 4.16, while the voltage to the driving stack

was either increased from zero to a higher magnitude gradually, simulating a higher structure

stiffness or decreased from zero to a lower magnitude gradually, simulating a lower structure
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stiffness. During the voltage increasing or decreasing process, the displacement of the sample

stack and the force in the systems was monitored carefully to prevent the sample stack from

being over compressed by the driving stack or the sample stack dropping off. Effective stiffness

of the structure was determined from the measured displacement and force data because the

displacement of the structure was assumed to be the negative of that of the sample stack as

expressed the compatibility equation 4.21.

The current and voltage in the circuit was obtained from the current and voltage monitor of

the Trek amplifier, while the displacement and force data were taken from the Fotonic sensors,

Kistler and Entran load cells.

The test results have been shown in the following figures. Fig. 4-19, Fig. 4-21 and Fig.

4-20 shows the measurement of the basic parameters. Fig. 4-22 shows the representative cycle

for determining the effective stiffness, mechanical work, electrical work and actuation efficiency.

These results have been shown in Fig. 4-23, 4-25, 4-24 and 4-26 where the experimental data

were compared with the theoretical predications. The actuation efficiency was shown as a

function of the stiffness ratio a.

The experimental mechanical and electrical work have been obtained from the following

equations

W = (4.26)
.0

WE = VIdt (4.27)

The experimental actuation efficiency was obtained from the ratio of the peak mechanical

work to that of the electrical work.

The theoretical prediction for the mechanical work and electrical work was obtained from

the following equations:

WM N1 2,6Tk 2  a (4.28)
2 1 33 33 (1+ a) 2

WE 2- A 2 (4.29)
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Rom these figures, we can see that the experimental data of the mechanical work, electrical

work and actuation efficiency correlate with the theoretical prediction very well.

4.8 Non-linear Tests

The test approach of non-linear tests was exactly as shown in FMg. 4-4. Voltage with the

same frequency and the same phase were applied to both the sample stack and the drivin

stack However, unlike in linear tests, the applied voltage to the driving stack was determined

according to the Voltage-Force Model, while force was determined from the chosen non-linear

loading functions and voltage applied to the sample stack was the same as expressed by equation

4.16. The frequency chosen was still 10 Hz and the phase difference of the two applied voltage

was zero. The current and voltage in the circuit was obtained from the current and voltage

monitor of the Trek amplifier, while the displacement and force data was taken from the Fotonic

sensors and Kistler and Entran load cells.

Tfhe experimental mechanical and electrical work has been obtained using equation 4.26 and
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equation 4.27. Similarly the actuation efficiency was determined by the ratio of peak mechanical

work to peak electrical work.

The theoretical mechanical work and electrical work has been determined by the following

equations which is the same as expressed in Chapter 2 and are listed here for convenience. a

was chosen to be 0.96 for safety consideration.

WM = a xo cxxdx (4.30)

WE = iA f(1+ acx) xdx + (3-1) (1 + acx)2 xdx + (4.31)
3 (1 f x2 dx

+ Aa 3 1 (1+ acx) x d(4.32)

The actuation efficiency was determined by the ratio of equation 4.30 and equation 4.31.

For non-linear system 1 and 2, the non-linear part of the stiffness is expressed by equation 2.49

and equation 2.50 respectively.
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Figure 4-27: Predicted Displacement and Force for Non-linear Test 1

4.8.1 Non-linear system 1

Determination of Voltage to Drive Stack

As mentioned above, voltage to the driving stack was determined from the Voltage-Force model.

The theoretically predicted displacement of the sample stack and the force in the system as

well as the driving voltage to driving stack have been shown in Fig. 4-27 and 4-28.

Test Results

Test results have been shown in the following figures. Fig. 4-29, Fig. 4-30 and Fig. 4-31

show the measurement of basic parameters. Fig. 4-32 shows the representative cycle which was

used to determine the experimental mechanical and electrical work and the actually simulated

force-displacement relationship. Fig. 4-33, Fig. 4-34 and Fig. 4-35 shows the simulated force-

displacement relationship, the mechanical work out and the electrical work in.
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4.8.2 Non-linear system 2

Determination of Voltage to Drive Stack

Similar to non-linear systems 1, voltage to the driving stack for non-linear system 2 was also

determined from the Voltage-Force model. The theoretically predicted displacement of the

sample stack, the force in the system, as well as the driving voltage to driving stack, have been

shown in Fig. 4-36 and 4-37.

Test Results

Test results have been shown in the following figures. Fig. 4-38, Fig. 4-39 and Fig. 4-40 shows

the measurement of the basic parameters. Fig. 4-41 shows the representative cycle which

was used to determine the experimental mechanical and electrical work and the simulated

force-displacement relationship. ig. 4-42, ig. 4-43 and ig. 4-44 shows the simulated force-

displacement relationship, the mechanical work out and electrical work in.
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Linear System Non-linear System 1 Non-linear System 2
Predicted 0.1578 0.3321 0.2693
Measured 0.1496 0.3181 0.2596

Table 4.8: Comparison of Actuation Efficiency for Linear and Non-linear Systems
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Figure 4-45: Comparison of Mechanical Work for Linear and Non-linear Systems

4.9 Comparison and Discussion

The experimental and theoretical mechanical work and electrical work for both linear and non-

linear systems has been compared in Fig. 4-45 and Fig. 4-46. The actuation efficiency of the

linear and non-linear systems was listed in Table 4.8. The stiffless ratio a is 0.96.

From the table we can see that actuation efficiency of the non-linear systems is about 200%

that of the linear systems. From the figures of mechanical work of the linear and nonlinear

systems, we can see that the mechanical work out of the non-linear system is about 250% that

of the linear systems. The theoretical predictions correlate with experimental results very well.

This has verified theoretical prediction made in Chapter 2.
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Figure 4-46: Comparison of Electrical Work for Linear and Non-linear Systems

4.10 Summary

All the linear and non-linear test results and their correlation with theoretical prediction have

been discussed. The feedback control methodology used previously and have been replaced by

a feedforward approach. The Voltage-Force model needed for the simulated actuator-structure-

actuator system has been derived using the Rayleigh-Ritz formulation, and the related coeffi-

cient in its expression have been determined by experiment. The magnitude of the voltage to

the sample stack is 235 V for all the linear and the non-linear tests, while the frequency of all the

test is 10 Hz. For the linear systems, the test results have shown that the actuation efficiency is

the highest when the stiffness ratio is larger than one, and this maximum value is much higher

than that of the uncoupled analysis. For non-linear systems, the actuation efficiency of systems

simulated by non-linear function 1 is about 200% that of the linear systems, while the work

output of this system is about 250% that of the linear systems. The test results have exactly

proved out the theoretical predictions.
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Chapter 5

Non- Conservative Systems

5.1 Net Work in Conservative Systems

Up to now, all the systems discussed are conservative systems. The net electrical work input

to the systems and the net mechanical work out of the systems is all zero. This can be seen

from Fig. 4-45 and Fig. 4-46. To do actual work on the environment, we need to choose

non-conservative thermodynamic cycles.

5.2 Non-Conservative System and Its Efficiency

5.2.1 Non-Conservative Cycles

Highly non-linear functions can be used as thermodynamic cycles to do work on the environ-

ment. Such a cycle could be a circle or an elliptical circle or any other functions. The comparison

of such a thermodynamic cycle with the non-linear function 1 analyzed in the previous chapters

has been shown in. Fig. 5-1. A few more different such cycles have been shown in Fig. 5-2.

The general equation of the non-conservative cycles shown in 5-2 can be expressed as

x = djcos(O)+d sin(O)+dox (5.1)
f = d3 cos()+d 4 smn(O)+dof

Where 9= 0 - 2 is an independent variable. di, d2, d3, d4, do and dof are all constants.
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5.2.2 Efficiency

For these non-conservative systems, The net work into the systems and net work out of the

systems is not zero. The efficiency of the cycles can be defined as the ratio of net mechanical

work out to net electrical work in expressed as

Net Wm out
NetWe in (5.2)

Where NetWmout is net the mechanical work done on the environment, and NetWe in

is the net electrical work into the systems.

5.3 Experimental Demonstration

5.3.1 Simulation Methods

The non-conservative cycles shown in Fig. 5-2 can be simulated by driving the sample stack

and the driving stack simultaneously, and maintaining a constant phase difference between the

voltage to the sample and the voltage to the driving stack. For the purpose of demonstration,

non-conservative cycle 1 shown in Fig. 5-2 has been chosen as an example. The test frequency

and the driving voltage to the sample stack is the same as in the linear and the non-linear tests

in Chapter 4. The driving voltage to the driving stack has been increased gradually to find out

its influence on mechanical and electrical work as well as efficiency of the cycles simulated. The

phase shift of the voltage to the driving stack is /2.

Fig. 5-3 has shown the voltage to the sample and the driving stack for such an example.

5.3.2 Test Results

The test results have been shown in the following figures. Fig. 5-4, Fig. 5-5 and Fig. 5-6 show

the measurement of basic parameters such as displacement, force, current and voltage. Fig.

5-7 shows the representative cycle which has be used to determine the experimental mechanical

and electrical work and the simulated force-displacement relationship. Fig. 5-8, Fig. 5-10 and

Fig. 5-9 show the simulated force-displacement relationship, the net mechanical work out and

net electrical work in. for this cycle.
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The influence of driving voltage to the driving stack on the mechanical work, electrical work

and efficiency of the cycles have been shown in Fig. 5-12 and 5-11.

5.4 Summary

It has been shown that for the thermodynamic cycles chosen here the net work out of the

systems is not zero. The non-conservative cycle 1 has been successfully simulated by driving

the test sample and the driving stack simultaneously but maintaining a phase shift between the

two driving voltages. The efficiency of the cycles increases with the increasing of the magnitude

of voltage to the driving stack.
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Chapter 6

Conclusions and Recommendations

for Future Work

6.1 Conclusions on the Linear and the Non-linear Tests

The work presented has demonstrated that actuation efficiency viable metric coupled systems.

Different expressions such as material coupling coefficient, device coupling coefficient and actu-

ation efficiency, which have been used to describe and evaluate the energy flow and efficiency

of coupled systems, have been compared and contrasted. It has been found that load coupling

effects the performance for both linear and non-linear systems. The true thermodynamic actu-

ation efficiency expressed as the ratio of work output to work input of a system can incorporate

the coupling effects better than material coupling coefficient. Thus, actuation efficiency is more

efficient and more accurate in evaluating the performance and behavior of a system.

Through the coupled analysis and tests of piezoelectrically driven systems, the performance

of linear systems have been better understood. For a linear system in which a piezoelectrically

active material working against a linear load, it is believed traditionally that the maximum

efficiency of systems is a quarter of the material coupling coefficient squared. This maximum is

reached when the stiffness ratio of structure and piezo active material equals one. However, the

coupled analysis and tests in this research have shown that actuation efficiency is the highest

when the stiffness ratio is larger than one, and this maximum value is much higher than that

of the uncoupled analysis, although the efficiency of the uncoupled analysis does increase when
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material coupling coefficient increases. These results agree very well with those found from the

literature, and have been verified by the linear tests in this research. The test results correlate

with theoretical prediction very well.

For a non-linear system in which a piezoelectrically active material working against a non-

linear load, the coupled analysis has found out that it is possible to significantly increase

the work output and actuation efficiency of the system. Two non-linear functions have been

chosen for the demonstration. The test results have shown that the actuation efficiency of non-

linear systems is much higher than that of linear systems. The actuation efficiency of systems

simulated by non-linear function 1 is about 200% of that of the linear systems, while the work

output of this system is about 254% of that of the linear systems. This has also been verified

by tests.

The renovation of the component tester has proven to be a success. The previous tester was

designed and built with programmable impedance and closed loop test capability. However,

the feed back control method is not fast enough in determining the voltage for the driving

stack which has limited the test frequency. Meanwhile, the original mechanical design can not

guarantee the accurate measurement of mechanical work. Therefore, renovation of this tester

is essential in experimental verification of the linear and non-linear theoretical predictions.

The load transfer system of the tester has been redesigned and feedforward open loop test

methodology has used instead of the feedback control. All the linear and non-linear tests have

been conducted on the renovated test facility, and the theoretical predictions about the linear

and non-linear systems have been experimentally verified.

6.2 Conclusions on Non-Conservative Systems

All the linear and non-linear tests done are for conservative systems. The net work on the

environment has been shown to be zero. To do work into environment, non-conservative cycles

have been chosen. Such cycles could be a circle or an elliptical circle. The efficiency of such a

thermodynamic cycle can be defined as the ratio of net mechanical work out to the net electrical

work in.

The net work out of the systems for non-conservative cycle 1 has been demonstrated to be
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non-zero. The systems have been simulated by driving the test sample and the driving stack

simultaneously but maintaining a phase shift between the two driving voltages. The efficiency

of the cycles increases with the increasing of the magnitude of voltage to the driving stack.

6.3 Recommendation for Future Work

This research has shown that the actuation efficiency of the non-linear systems is almost twice

as high as that of the linear systems, and for the non-conservative systems, work can be done

on the environment. This will highly reduce the complexity of the actuation systems for some

applications such as a pump. However, the non-linear loading device and non-conservative cycle

device must be designed and built first. A method of achieving such a non-linear system is to

configure two springs into a triangle and looking at the behavior of the springs as they are

loaded through the central platform they are connected, as explained in [Malindal, 1999].

The analysis and tests presented here are all in quasi-static region. However, in some

cases such the helicopter rotor blade and airplane wing applications, active materials undergo

dynamic load. The behavior and performance of active materials and the actuation efficiency

of the piezoelectrically driven systems under dynamic loads should be explored also.
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Appendix A

Component Testing Facility

Drawings

The following pages contain the complete set of the mechanical drawings for the renovation of

the Component Testing Facility. The materials used and the tolerances of each part have been

specified on each of the drawings.
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This thesis presents the nonlinear theory for large deformation electroelastic continua
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Chapter 1

Introduction

1.1 Motivation

Engineering analysis techniques are used in design and development of actuator and
sensor devices to predict the performance of a candidate design. Accurate device
analysis allows the engineer to optimize a design for a given performance objective
and constraints. Alternately, inaccurate device analysis could lead to poor designs
and device failure.

This thesis considers analysis of highly electrically insulating deformable bodies
subject to electrical and mechanical loading. The response of such highly insulating
devices can be influenced or dominated by the cumulative effects of a very weak
electric current flow. Much of the engineering analysis literature is concerned with
perfect electrically insulating deformable bodies. The perfect insulator approximation
is only accurate provided the time scales of loading are sufficiently fast to prevent the
cumulative effects of a weak electric current flow. Device designs based on perfect
insulator analyses are likely to fail when subjected to sufficiently slow time scale
loadings.

1.2 Objective

This thesis will report on the mathematical abstraction of deformable electromechan-
ical actuator and sensor devices composed of highly electrically insulating materials.
A first objective is to present a clear exposition with detailed proofs of the nonlin-
ear large deformation theory of electroelastic continua with electric conduction. A
second objective is to investigate the consistency between this general electroelastic
continua theory and the classical small deformation piezoelectric theory based on
Poynting vector interpretations, extended for electric conduction. A third objective
is to develop an engineering analysis tool for deformable electromechanical actuator
and sensor devices composed of highly insulating materials with nonlinear response
functions (e.g., repolarizable piezoelectric ceramic material), suitable for arbitrary
device geometry and loading conditions.
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1.3 Background

An excellent monograph on the analysis of electroelastic perfect electrically insulating
bodies subject to the assumption of small deformations is TIERSTEN'S [29] Linear
Piezoelectric Plate Vibrations. TIERSTEN presents the balance of energy equation
for the classical small deformation theory based on the notion of Poynting's vector
as the electric energy flux vector across a surface. The result is a local form of
the energy expression containing the scalar product of electric field vector with the
time derivative of electric displacement vector. The theory presented in TIERSTEN'S
monograph can be extended to include the effects of weak electric current density by
retaining the electric current density term in Poynting's vector and appending to the
system of equations the entropy inequality axiom. As noted by TIERSTEN, the effects
of large deformation and electric body forces have been ignored. A natural question
to ask is how accurate is this small deformation theory compared to the general large
deformation theory, and what are the effects of the ignored electric body forces? This
question can be answered by studying the large deformation theory of electroelastic
continua and the consequences of introducing a small deformation approximation.

A large deformation theory of electroelastic continua, independent of Poynting
vector interpretations, has been developed. See DIXON & ERINGEN [9], MAUGIN &
ERINGEN [17] , ERINGEN & MAUGIN [11] for derivations based on a space (volume)
averaging procedure, and TIERSTEN [30], TIERSTEN & TSAI [35], and DE LORENZI

& TIERSTEN [8] for derivations based on a well defined model of interpenetrating
continua. A necessary prerequisite would be a study of large deformation continuum
mechanics theory, see ERINGEN [10], OGDEN [21], and GURTIN [15]. We remark that
these two derivations result in equivalent theories, and it is worthwhile to study both
approaches. An excellent monograph summarizing this large deformation electro-
magnetic theory is ERINGEN & MAUGIN'S [11] Electrodynamics of Continua I which
contains as a special case the electroelastic theory with electric conduction that we
are interested in.

Solutions of the large deformation equations can be difficult to obtain, and there-
fore introduction of a small deformation approximation is frequently carried out in
the literature. Examples of small deformation analyses, usually superposed on a
large deformation, have been presented, for example, by TIERSTEN [31, 33, 32, 34],
BAUMHAUER & TIERSTEN [3], TIERSTEN & TSAI [35], DE LORENZI & TIER-

STEN [8], and also MAUGIN, ET AL [19], ERINGEN & MAUGIN [11], ERINGEN [12],
MAUGIN & POUGET [18], ANI & MAUGIN [1].

In all of the above works, the starting point of the analyses are the large defor-
mation electroelastic equations. Reduction to the small deformation equations make
explicit exactly what terms are being neglected. Clearly it is desirable to begin an
analysis from such a framework. A natural question to ask is, are the equations used
in the classical small deformation theory, based on Poynting vector interpretations,
consistent with the large deformation theory? The primary equation of concern is
the balance of energy expression. Indeed, THURSTON [26] has asked this consistency
question regarding the perfectly insulating electromagnetic continua theory. He in-
troduces a total energy function as the sum of an internal energy function and a free
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space energy term, then transforms the energy equation in terms of the total energy
function to material fields. THURSTON demonstrates that introducing a so-called
thermostatic approximation, that ignores certain velocity and magnetization terms,
will result in an energy expression that simplifies under the small deformation ap-
proximation to the classical energy expression derived using Poynting's vector. Use
of the thermostatic approximation is not very satisfactory of a reconciliation between
the two theories, and suggests the classical small deformation piezoelectric theory is
not consistent with the general electroelastic theory.

THURSTON's result, however, is very interesting. Indeed, the unsatisfactory ther-
mostatic approximation is not needed if the energy equation1 is restricted from elec-
tromagnetic continua to electroelastic continua. Although THURSTON does not em-
phasize this, the transformed energy expression for electroelastic continua will be
exactly consistent, under the small deformation approximation, with the classical
energy expression based on Poynting's vector.

MCCARTHY & TIERSTEN [20], working with large deformation semiconducting
electroelastic continua, present a transformation for the balance of energy in terms of
material fields. The derived balance of energy expression 2, under the small deforma-
tion approximation and simplified to electric conduction, will be exactly consistent
with the classical form of the energy expression relying on Poynting's vector when
extended to include electric conduction.

An approach using THURSTON'S transformed energy expression for perfectly in-
sulating continua and MCCARTHY & TIERSTEN'S transformed energy expression for
semiconducting continua can be used to prove consistency between the large defor-
mation electroelastic continua with electric conduction and the classical small defor-
mation piezoelectric theory relying on Poynting's Vector interpretation, extended for
electric conduction. Such a study is certainly worthwhile, as it exposes the assump-
tions and approximations inherent in the classical small deformation theory, including
the role of electric body forces.

TIERSTEN'S monograph Linear Piezoelectric Plate Vibrations is concerned with
the analysis of highly electrically insulating piezoelectric bodies in vibration, and
therefore does not consider the effects of electric conduction. In fact, highly insulat-
ing materials are almost always assumed to be perfectly insulating. It is important
to recall that all highly insulating materials, classified in, the engineering literature
as electrical insulators, will support non-zero electric conduction currents, usually
referred to as leakage currents in elementary physics texts [39, 38, 16]. Under suf-
ficiently fast dynamic loading of a highly insulating body, the cumulative effects of
weak electric conduction currents are typically negligible, and the perfect insulator
approximation may very well be an excellent one.

On the other hand, if the loading time scales are such that very weak electric
currents have a cumulative effect, then an analysis based on the perfect insulator
approximation could be very inaccurate. Consider the example of a highly insulating
piezoelectric device under a sufficiently high frequency sinusoidal electrical loading.

1See eq. 13.48 on p.162 of [26]
2See eq. 3.16 on p.35 of [20]
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In this case, the pefect insulator approximation may be an excellent one. However,
consider the same device under identical high frequency electrical loading, but with
an additional electric voltage DC offset. After a sufficiently long period of time the
cumulative effects of the weak electric current flow will dominate the voltage offset
response. This is an example of a typical loading condition on highly insulating
devices when electric conduction will in general be signifcant.

1.4 Thesis Contributions

This thesis is based on the recognition that highly electrically insulating actuator and
sensor devices under general electrical and mechanical loading must be analysed in
the framework of electroelastic continua with electric conduction. This thesis presents
a detailed account of the nonlinear theory for large deformation highly insulating
electroelastic continua with electric conduction, and proves the consistency between
this theory and the classical small deformation piezoelectric theory based on Poynting
vector interpretations, extended for electric conduction. The essential step is proving
the equivalence of the balance of energy equations in the two theories. A consequence
is that electric body forces, recognized mathematically as electric surface tractions,
are naturally retained in the small deformation approximation. Finally, this thesis
presents a finite element formulation suitable for performance analysis of deformable
electromechanical actuator and sensor devices composed of highly insulating materials
with nonlinear response functions (e.g., repolarizable piezoelectric ceramic material)
and arbitrary device geometries, under the small deformation approximation.

1.5 Thesis Outline

Our presentation is in the framework of continuum physics. We introduce the notion
of a body as a collection of points. Deformation is a mapping of the body from some
reference configuration to a new deformed configuration. The notion of change of
observer and change of reference configuration is introduced. These will be needed
for deducing restrictions on the constitutive functions, as required by our constitu-
tive theory axioms. Mathematical results essential to the development are presented.
Fundamental axioms of the continuum physics theory are presented in terms of spatial
fields. Differential equations are derived from the integral form statements. Jump
conditions are derived from integral form statements extended to include surfaces
of discontinuity. Constitutive equations are derived in terms of an internal energy
function and a total energy function. We introduce the notion of material fields,
and systematically derive equivalent material field representations of the global and
local equations. Constitutive equations are derived from the material fields, which
automatically satisfy the material objectivity axiom. Jump conditions in material
fields are derived from integral form statements extended to surfaces of discontini-
nuity. These are needed to piece together solutions across material discontinuities,
and specialize to boundary conditions on the bounding surface of a body. The small
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deformation approximation is introduced to simplify the governing equations. A weak
form of the resulting small deformation equations is presented as a starting point for
our finite element formulation. Solution techniques for the finite element equations
are presented, with results from analysis of a piezoelectric fiber embedded in an epoxy
matrix under an electric voltage DC offset loading, using a nonlinear material model
for repolarization.
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Chapter 2

Large Deformation Electroelastic
Equations

2.1 Introduction

This chapter presents essential theorems and proofs in the nonlinear large deformation
theory of electroelastic continua with electric conduction. The differential equations
and jump conditions needed for device analysis are summarized in chapter 3 for
convenience.

2.2 Bodies, Deformations, and Motions

1 Bodies have the property that they occupy regions of three dimensional Euclidean
point space 6. An arbitrary point x in S is associated with a position vector X in
three dimensional Euclidean vector space E, relative to an arbitrarily choosen origin
point o E S. For fixed o, x and x have a unique correspondence, and we can identify
the point x with the vector x. When o is fixed in 8, we use x to denote both a point
in & and its corresponding position vector in E.

We define a body B as a regular region1 in 8. In general, B will occupy different
regions of 9 at different times2 t E R. For convenience we choose one such region B1
as the reference configuration of B. Points in the body can be identified with their
positions in B0 . We call points X E B, material points. A deformation i carries the
body from its reference configuration B,, to a deformed configuration Bd and carries
each material point X to a point x,

k:Bo--*8,

Jk: X i-+ as,

1This section is based on OGDEN [21, pp. 77-83]
1A closed region is the closure of a connected, open set in 6. A regular region is a closed region

with piecewise smooth boundary.
2The set of real numbers is denoted by R.
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where we write,

Bd=X(Bo).

The motion Xt of B is a smooth one-parameter family of deformations parameterized

xtA

Figure 2-1: Motion Xt from B0 to Bt.

by time t. The region Bt is called the current configuration of B, and the point x is
called the spatial point occupied by the material point X at time t,

Xt :B0 -* E,
Xt:XI-+X.

We write

Bt = X (Bo, t),

X = X(X,t).

Axiom 2.2.1 (Axiom of Continuity) 2 Throughout the body B the motion Xt and
its inverse are single-valued and as many times continuously differentiable as required.

The inverse mapping Xt- 1 takes the deformed body Bt back to its reference configu-
ration Bo. We write

B, = X-I (B,,t),
X = X-1(XI 0 .

If we choose our reference time corresponding to B0 , at t = 0, then the reference
configuration B0 necessarily satisfies

B = (8o 0)

B0 = ('6, 0)

2TRUESDELL & TouPmN [37, p. 243]
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2.3 Observer Transformations

3 Suppose an event in the physical world manifests itself at a point of Euclidean point
space F and at a time in IR. This event will be recorded by an observer 0 as occuring
at (x, t). If x and xo are distinct points of £ and t and to are distinct times in , then
two events observed by 0 at (xo, to) and (x, t) are seperated by a distance 1ix - x,11
in E and a time interval t - to in PR. The definition of an observer transformation
is based on the notion that different observers must agree about distance and time
intervals between events.

Definition 2.3.1 (Change of Observer) An observer transformation or change of
observer is defined as any transformation that takes (xo, to) and (x, t) to (x*, t*) and
(x*, t*), such that distances and time intervals are preserved, 4

lix - xo1I = Ilx* - x0*o ,
t-to = t*-t*.

The general form of such a transformation is,

x*= Q(t)x+b(t) , t*=t-a

Q'Q = QQ'=I
det(Q) = +1,

where a is an arbitrary scalar, b(t) is an arbitrary vector, and Q(t) is an arbitrary
orthogonal tensor. It is convenient to restrict Q(t) to arbitrary proper orthogonal
tensors, such that det (Q) = 1.

Remark 2.3.2 (Observer Transformation) For the motion Xt of a body B, an
observer transformation or change in observer X* is,

X*(x,t*) = Q(t)x(X,t)+b(t) t* =t-a. (2.1)

Q'Q' = QQ'= I
det(Q) = 1.

A transformation (2.1) that takes (x, t) to (x*, t*) is interpreted as a change of ob-
server from 0 to O*, such that the event recorded by 0 at (x, t) is the same event
as that recorded by O* at (x*, t*). In general, the description of a physical quantity
associated with the motion Xt of a body B depends on the choice of observer. Such
a distinction will be important for deducing restrictions on constitutive equations for
material response.

3This section is based on OGDEN [21, pp. 73-77] and GURTIN [15, pp. 139-145]
4 The 2-norm is defined by, xil-- (E 3 x21 /2
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2.4 Fields, Deformations, and Integral Theorems

5 To introduce definitions of material and spatial fields, we define the reference set T
and the trajectory set T as

T = {(X,t)IXE8o, tEIR},

T = {(x,t)Ix EBt, t E}

Definition 2.4.1 (Material and Spatial Fields) A material field is a function
with domain T. A spatial field is a function with domain T.

Remark 2.4.2 (Fields) All fields defined over T are assumed to be as many times
continuously differentiable as required. Surfaces and lines of discontinuity will be
addressed in section 2.14.

Much of the theory presented involves integrals over volumes, surfaces, and lines
contained in either 3, or Bt. Here we introduce notation to distinguish between sets
of points in the two configurations.

Definition 2.4.3 (Volumes, Surfaces, and Lines in 13o and B)

* A material volume V,, is a volume in 1. The material volume V is the volume

in Bt occupied by the material points X E V at time t,

V=x(V, t).

" A material surface So is a surface in B0,. The material surface S is the surface
in Bt occupied by the material points X E S, at time t,

S= x(S 0,t).

* A material line C is a line in 3,. The material line C is the line in Bt occupied
by the material points X E C0 at time t,

C=x(C, t).

Many of the proofs will be made more transparent by introducing a Cartesian coor-
dinate system and manipulating vectors and tensors in their component form.

Definition 2.4.4 (Cartesian Coordinate System) Material and spatial fields will
be referred to a single Cartesian coordinate system fixed in E. The set of basis vectors
for this system will be denoted by either ik or iK, with indices k, K = 1, 2, 3.

5This section is based on ERINGEN [10, pp. 5-92] and GURTIN [15, pp. 41-85]
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Definition 2.4.5 (Summation Convention) Summation over once repeated in-
dices is understood.

For example,

XMiM = Xli 1 + X 2 i 2 + X 3 i 3 .

A material point located in the reference configuration B,, by P and in the current
configuration Bt by p are represented in the Cartesian coordinate system by

P = XMiM,

P = Xkik.

Definition 2.4.6 (Component Notation Convention) Components associated with
the reference configuration 13o will consistently have capital indices. Components as-
sociated with the current configuration Bt will consistently have lower case indices.

Frequently both spatial and material fields will be presented and manipulated in their
component form. For example, a spatial vector field A, a material tensor field B,
and a two-point tensor field F are referred to the Cartesian coordinate system by'

A = Ak ik,

B = BRsiR®is,

F = FkRik ®iR. (2.2)

Consistent with our convention, the fields A, B, and F can be written in component
form as Ak, BRs, and FkR respectively. Similarly, the motion Xt of a body may be
written in component form as

Xk = Xk (XM, t) , (2.3)
XM = X-1 (Xkt) (2.4)

We will occasionally abuse notation by not distinguishing between the function and
its value in (2.3) and (2.4). For example,

8Xk _ OXk (XJ, t)

aXM OXM

OXM _ axjl (xI t)
OXk 9 Oxk

Integral transformations will be needed to rewrite conservation laws originally defined
over Bt, in terms of fields over B.. For example, if boundary conditions are only
known in terms of the reference configuration Bo, then it can be useful to rewrite the
governing equations in terms of fields over 3o.

'The tensor product (or dyadic product) of two vectors a and b is denoted a®b and has Cartesian
components (a ® b)j = aibj
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Definition 2.4.7 (Jacobian Determinant) The Jacobian determinant J is assumed

to be strictly positive for all time t,

J = det (1Xk) > 0.

Theorem 2.4.8 (Transformations of Arc, Area, and Volume) A material el-
ement of arc dxi in the current configuration Bt is related to its element of arc dXj
in the reference configuration 3, by

Ox,
dxi = ax' dXj. (2.5)

A material element of area ni dS in Bt is related to its element of area Nj dSo in Bo
by

Ox.,
n jdS Nj dSo. (2.6)

A material element of volume dV in Bt is related to its element of volume dV in 3,
by

dV = J dV. (2.7)

Proof. See ERINGEN [10, pp. 45-48] or OGDEN [21, pp. 83-89] for a proof.

Definition 2.4.9 (Kronecker Delta) The Kronecker delta symbol, 6ij, is defined
by

0 i-4j

Consider a material vector field AK and a spatial tensor field Bij. It can be verified
directly from definition 2.4.9 that the Kronecker delta symbol has the property of
changing indices,

AK 6KM = AM,

B,, 6jk = B&.

Definition 2.4.10 (Alternating Symbol) The alternating symbol, -ijk, is defined
by

1 if (ijk) is a cyclic permutation of (123)
,-ijk -1 if (ijk) is an anti-cyclic permutation of (123)

0 otherwise

Consider two spatial vector fields a and b. It can be verified directly from definition
2.4.10 that the vector cross product of two vectors and the alternating symbol are
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related by,

(a x b)i = Eijkajbk. (2.8)

A direct consequence of (2.8) is an expression for the curl of a vector field in terms
of the alternating symbol,

(V x b)i = Eijkbk,j.

Useful expressions for the determinant and cofactor of a 3 x 3 matrix Aij in terms of
the alternating symbol are6

det (Aij) = 1eijkepqrAipAjqAkr,
1

cofactor (Aip) = 1EijkepqrAjqAkr. (2.9)

Recall, the cofactor matrix and determinant satisfy7

det (Aij) (Aij) - = cofactor (Aji). (2.10)

Consider a material tensor field TJK. It can be verified directly from definition 2.4.10
that the equation

EIJKTJK = 0

implies that the anti-symmetric components of TJK are identically zero,

T[JK] = .

Using (2.3) and (2.4) for fixed time t we obtain

dXk = 8Xk dXM, (2.11)
OXM

dXMXM dxk. (2.12)
#9Xk

From the chain-rule of differention, we obtain the useful relations

OXk OXM

aXM Ox,
OXM OXk = MN-

OXk OXN

0 See SEGEL [23, pp. 14-23] for discussion on the alternating symbol and determinants
7 See STRANG [24, pp. 211-227]
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We will frequently introduce a symmetric/anti-symmetric decomposition in our proofs
and statements. To simplify our presentation we introduce the following notation.

Definition 2.4.11 (S/A Decomposition) The symmetric/anti-symmetric (S/A)
decomposition of a tensor Aij is defined as

A( ) = (A3 + A)

1 (Aij - Aji)

Ai A(i) + A[i].

The deformation and strain tensors introduced next will appear when transforming
our equations from spatial to material fields. They also appear when material response
functions depending on the displacement gradient are required to be invariant under
observer transformations.

Definition 2.4.12 (Deformation and Strain Tensors) The deformation tensor
CMN and the strain tensor EMN are defined as

CMN(XL,t) = OXk Xk

OXM OXN'

1 ( Oxk O9Xk
EMN(XL,t) = 2 aOXMOXN 6MN)•

The significance of these tensors is illustrated below. Consider elements dP in I3o
and dp in Bt,

dP.= dXMiM,

dp = dXkik.

The square of these elements are

dS2 = dXMdXM,

ds2 = dxk dxk
-- X a dXM dXN,

OXM aXN

" CMN dXM dXN.

The measure of change of length for the same material points in B0 and Bt is

d82 - \ OXM X - MN dXM dXN,

= 2EMN dXM dXN.

Definition 2.4.13 (Comma Notation) A comma followed by an index denotes
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partial differentiation with respect to a coordinate. For example,

OXk
Xk, M OXM'

OXM
XM,k - XaXk

In continuum physics theory, the time rate of change following a material point Xk
is frequently encountered. We therefore introduce the following notation.

Definition 2.4.14 (Material Time Derivative) The material time derivative op-
erator is defined as the time rate of change following a material particle XM,

d 0

dt) -t XM

Definition 2.4.15 (Material Velocity) The material velocity field Vk is defined as

Vk- k(x J, t)IOt XM

Proposition 2.4.16 (Material Time Derivative: Spatial Fields) The material
time derivative of any spatial field 0 (xk, t) is

d = 0 + v ¢,k. (2.13)
dt -t

Proof. Introducing Xk = Xk (XK, t) and using the chain rule

do = = 0q+ 0 Oxk[

dt Ot Ok Ot XM

In continuum mechanics it is natural to express balance laws in terms of integrals
over material lines, material surfaces, and material volumes in Bt. Below we state
some results that will be useful in working with such integrals.

Lemma 2.4.17 The material time derivative of the Jacobian determinant J is

J = JVk,k (2.14)

Proof. From (2.9) we write

1
J = -ijk6JKXiIXj,JXk,K.
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Differentiating J with respect to Xr,R and using (2.9) and (2.10),

8J 1

OXr, R CrjkCRJKXj, JXk K.

= cofactor (xr, R)
= JXRr.

Taking the material time derivative of J

O= J d- Xr, R dt (Xr, R) = JXR, rVr, R

proves (2.14).

Lemma 2.4.18 The material time derivative of the deformation gradient XJk is

d (xj, = -XJkvk,, (2.15)dt

Proof. Take the material time derivative of

XJ,k Xk,K = 6JK,

and multiply the result by XK,i to obtain

d
S(XJ, = -XkVk,.X.,KXK,idt

-XJ kVk,,bi. (2.16)

Equation (2.16) proves (2.15).
Below we derive three useful theorems for material time derivatives of integrals over
material lines, material surfaces, and material volumes in Bt.

Remark 2.4.19 (Integrals over Elements of 3o) According to definition 2.4.14,
the material time derivative operates holding material points X E B,, constant, there-
fore, the material time derivative operator commutes with integrals defined over ele-
ments in B0 .

Theorem 2.4.20 (Material Time Derivative: Line Integral) The material time
derivative of a line integral of any spatial field 0 over a material line C in Bt is

d
dfOdxi = fqdxqv 1 dx) (2.17)

Proof. Transform the integral over elements in St to an integral over elements in

B,0 using (2.5), commute the material time derivative operator with the integral over
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C, and transform the integral back into an integral over elements in Bt,

d f dxi = d fCxi, j dXj

= C ( I , i + OvJ dX,

= / xi i + Oi J)Xj, j dxj

= J(0 ij + Ovi,j) dxj. (2.18)

Equation (2.18) proves (2.17).

Theorem 2.4.21 (Material Time Derivative: Surface Integral) The material
time derivative of a surface integral of any spatial field € over a material surface S
in Bt is

d J snjdS = f [(O V ni - Vk,ink] dS. (2.19)

Proof. Transform the integral over elements in Bt to an integral over elements in 3o
using (2.6), commute the material time derivative operator with the integral over S,
use the relations (2.14) and (2.15), and transform the integral back into an integral
over elements in Bt,

d r dra-] f naS = is q oJXj,,NjdSo

= ~L~J[X, +i + Xj,,i + 01J- (X, i) Nj dSo

-t I= Js. [Pxi, + ObJV;, kXJ, i - qSJXJ, kvk, i Ni dS.

= f' [(q$+O4Vk,k) Xi- OV,iXJk] J'x,j nrdS

= fs [(q5 + Obkk) 3 ir - O!Vk~j Ski] n, dS. (2.20)

Equation (2.20) proves (2.19). 0

Theorem 2.4.22 (Material Time Derivative: Volume Integral) The material
time derivative of a volume integral of any spatial field 4 over a material volume V
in Bt is

d fv dV = b+ vk, k) dV. (2.21)

~d fqdV = f[T"t+ (OVk)k] dV (2.22)

Proof. Transform the integral over elements in Bt to an integral over elements in I3o
using (2.7), commute the material time derivative operator with the integral over V,
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use the relation (2.14), and transform the integral back into an integral over elements
in Bt,

dfv dV = dfoJdVo

, J( +vk,,) dV. (2.23)

Equation (2.23) proves (2.21). Using (2.13) in (2.21) proves (2,22).

2.5 Fundamental Axioms of Electromagnetics and
Thermomechanics

8 This section presents the fundamental axioms of electromagnetics and thermome-

chanics for deformable continua, including both fluids and solids. The electromagnetic
equations are presented in terms of rationalized MKS units9 . The axioms of electro-
magnetism are defined over spatially fixed line, surface, and volume integrals. In our
presentation below, we take these integrals to coincide at time t with the deformed
body Bt.

Definition 2.5.1 (Fields)

c, = permittivity of free space

Mo = permeability of free space

E = electric field vector in Bt

H = magnetic field vector in Bt

P = polarization vector in Bt

D = electric displacement vector in Bt

D = oEE+P,

M = magnetization vector in Bt

B magnetic induction vector in Bt
__ 1

H - B- M,

qF = free charge per unit volume in Bt

J = electric conduction current in Bt (with respect to fixed frame)

J = total electric current in Bt (with respect to fixed frame)

OThis section is based on ERINGEN & MAUGIN [11, pp. 72-81]
9See ERINGEN & MAUGIN [11, p. 406]
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J = J qFv

p = mass per unit volume in Bt,

Po = mass per unit volume in 83,
= electromagnetic or electric force per unit volume in Bt,

fi = non-electromagnetic force per unit mass,

tj = force per unit area in Bt,

tj = rjinj,

rji = Cauchy stress tensor,

CE = electromagnetic or electric body couple per unit volume in Bt,

E = internal energy per unit mass,

= electromagnetic or electric power per unit volume in Bt,

h = heat power per unit mass,

q = heat flux per unit area in Bt,

= entropy per unit mass,

E = absolute temperature.

Axiom 2.5.2 (Gauss' Law)

sD.ndS = JvqFdV. (2.24)

Axiom 2.5.3 (Conservation of Magnetic Flux)

B-ndS =0. (2.25)

Axiom 2.5.4 (Faraday's Law)

SE .adx - ojB.ndS. (2.26)

Axiom 2.5.5 (Ampere's Law)

H.dx = J.ndS+- fD.ndS. (2.27)

Axiom 2.5.6 (Conservation of Mass) The total mass of a material body B is un-
changed during the motion Xt of the body.

fvPdV = Jv podV (2.28)

Axiom 2.5.7 (Balance of Momentum) The time rate of change of momentum of
the material body is equal to the resultant force acting upon the body.

dfpv V = (,f + fE) dV + ft dS. (2.29)
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Axiom 2.5.8 (Balance of Moment of Momentum) The time rate of moment of
momentum of the material body is equal to the resultant moment of all forces and the
resultant of all couples acting on the body.

xxpdV f=J[x x (pf +fE) +CE] dV+fx x tdS. (2.30)dt f)+

or in component form,

d f CknjXnpvj dV = f [knjxn (Pf E + f,) + CE] dV + fCknjxntj dS. (2.31)

Axiom 2.5.9 (Conservation of Energy) The time rate of change of the sum of
the internal and kinetic energies of a material body, considered as a closed system, is
equal to the sum of the rate of work of all forces and couples and the energies that
enter or leave the body per unit time.

f ( Pvv+P) dV = f, (I + ph + pfivi) dV

+ f (tiv, - qin,) dS. (2.32)

Axiom 2.5.10 (Law of Entropy) The time rate of the total entropy is never less
than the sum of the entropy supply due to body sources and the entropy influx through
the surface of the body.

d f> Ph

f p 7 dV dV - qni dS. (2.33)

Axiom 2.5.11 (Postulate of Localization) The axioms hold true for any volume
element in V, any surface element in S, and any line element in C.

2.6 Maxwell's Equations

This section deduces the local balance laws from the global axioms.

Theorem 2.6.1 (Maxwell's Equations) The local equations (2.34)-(2.37) are equiv-
alent to (2.24)-(2-.27),

V.D = qF, (2.34)

V.B = 0, (2.35)
OB

VxE = .r' (2.36)

OD
VtH = J+ O-. (2.37)

Proof. Commute the partial time derivative with the spatially fixed integrals
(coinciding at time t with Bt). Applying (A.1), (A.2) to (2.24)-(2.27), and invoking
the postulate of localization proves (2.34)-(2.37).
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Proposition 2.6.2 (Conservation of Charge) The conservation of charge equa-
tion,

Oq F
VqJ+ at 0, (2.38)

is a consequence of Maxwell's equations (2.34) and (2.37).

Proof. Take the partial time derivative of (2.34) and the divergence of (2.37),

a (qF OD OqF  (2.39)

( t ==0. - t O '2. )

V- J+ )=V.(VxH) -* V. J+ O 0. (2.40)

Equation (2.38) follows from (2.39) and (2.40).

Definition 2.6.3 (Electromagnetic Energy of Free SpaCe) The electromagnetic
energy of free space UF is defined as

up = o(E .E + .B ) (2.41)2 Ao

Theorem 2.6.4 (Poynting's Theorem) All fields satisfying Maxwell's equations
(2.34)-(2.37) satisfy the identities

OD aB
E J +E - + H. --t- = -V. (E x H), (2.42)

aP OB OU R

E. J + E.--- M. - -=-V.(Ex H). (2.43)at at at
Proof. Take scalar product of (2.37) with E, and using the vector identity

V.(ExH)=H.(VxE)-E-(VxH),

obtain

OD
E.J=H.(VxE)-V.(ExH)-E---. (2.44)

Using (2.36) in (2.44) proves (2.42). Using (2.41) in (2.42) proves (2.43). a

Remark 2.6.5 (Poynting's Vector) The vector (E x H) in (2.42) and (2.43) is
called Poynting's vector and its surface integral is interpreted as the surface flux of
electromagnetic energy. In integral form, Poynting's theorem appears mathematically
as a conservation statement, with Poynting's vector as a surface flux term,

f,.-J+E.--O-+H.- dV =- (ExH).ndS.
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Physical arguments in support of the Poynting vector interpretation can be found in
STRATTON [25].

2.7 EQS Maxwell Equations

In this section the electroquasistatic (EQS) Maxwell equations are defined. These
equations are Maxwell's equations (2.34)-(2.37) with the magnetic induction term
assumed negligible, see HAUS & MELCHER [16], and TIERSTEN [27]. The EQS
equations are a good approximation for materials with small electric current flow,
where magnetic fields are presumed negligible.

Definition 2.7.1 (EQS Field) The EQS electric displacement D is defined as

D = cE+P. (2.45)

Definition 2.7.2 (Negligible Magnetic Induction) The magnetic induction and
its partial time derivative are assumed negligibly small,

OB 0 (2.46)

at
B 0. (2.47)

Remark 2.7.3 (Approximations) Equation (2.46) is the usual EQS approxima-
tion, permitting a non-zero static magnetic induction field. Equation (2.47),is an
additional approximation used to eliminate magnetic terms from the electromagnetic
body force and body couple equations (2.73) and (2.80).

The EQS Maxwell equations are,

V.D = q , (2.48)

V.B = 0, (2.49)

VxE ; 0, (2.50)
OD

VxH = J+-. (2.51)

The magnetic field term H can be eliminated by taking the divergence of (2.51) and
the partial time derivative of (2.48) to form the conservation of charge statement
(2.38). If H is desired it can always be determined from (2.51) once D and E are
known. From this point on the EQS Maxwell equations will be defined by:

Definition 2.7.4 (EQS Maxwell Equations)

V"D = qF, (2.52)

VxE = 0 -- E=-Vo, (2.53)
qF

V. J + 9q 0. (2.54)
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Definition 2.7.5 (EQS Poynting Vector) The EQS Poynting vector (E x H)EQs
is understood as notation for a vector and is defined by

(ExH)EQs = + (2.55

Definition 2.7.6 (Electric Energy of Free Space) The electric energy offree space
UF is defined

1

vF = ,E .E. (2.56)

under the EQS approximation.

Theorem 2.7.7 (EQS Poynting's Theorem) All fields satisfying the EQS Maxwell
equations (2.52)-(2.54) satisfy the identities

E.J E.OD
E-J-+-E - - (E x H)EQs, (2.57)

OP OUF
E. J + E. --w + 5t- -=_V "(E x H)EQs. (2.58)

Proof. Using (2.53) and the vector identity

V x (OH) = Vq x H + OV x H,

gives

-V-(ExH) = V.[Vx(¢H)]-V.(OVxH),
= -V. (OV x H). (2.59)

Using (2.37), (2.59), (2.55), and (2.46) in (2.42) proves (2.57). Using (2.45) and (2.56)
in (2.57) proves (2.58). 0

We will find it convenient to work with a reduced form of the EQS Maxwell
equations that do not contain free charge qF explicitly. First we note the integral
form of the EQS equations.

Proposition 2.7.8 (EQS Maxwell: Integral Form) The integral form of the EQS
Maxwell equations (2.52)-(2.54) are

i Dini dS = J qF dV (2.60)

fcEidxi = 0 (2.61)

d fq FdV +fJjndS = 0, J= Jt - q'vi (.2

Proof. Integrating (2.52) over a material volume V in spatial coordinates and using
(A.1) proves (2.60). Integrating (2.53) over an open material surface S in spatial
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coordinates and using (A.2) proves (2.61). Integrate (2.54) over a material volume V

in spatial coordinates and use (A.1) to obtain

J-ndS + f dV = 0. (2.63)

Using (2.22) and (A.1) in (2.63) proves (2.62).

Proposition 2.7.9 (Reduced EQS Maxwell: Integral Form) The EQS Maxwell
equations (2.60)-(2.62) are equivalent to

dfDini dS +f Jtni dS = 0 (2.64)

fc E dxj = 0 (2.65)

Proof. Taking the material time derivative of (2.60) and using in (2.62) proves
(2.64). S
It will be useful to define the following convective time derivative.

Definition 2.7.10 (Convective Time Derivative) The convective time derivative
of a spatial vector field Di is defined as

D* = bi + Divk,k - Dkvi,k (2.66)

This definition is motivated by (2.19) and satisfies

d DinidS = sDn, dS. (2.67)

Proposition 2.7.11 (Reduced EQS Maxwell: Local Form) The local form of
the reduced EQS Maxwell equations (2.64) and (2.65) are

(Di + d'), = 0 (2.68)

(V x E), = 0 -* E= -0,i (2.69)

Proof. Equation (2.67) in (2.64) and postulate of localization proves (2.68). Equa-
tion (A.2) in (2.65) and postulate of localization proves (2.69).

2.8 Conservation of Mass

This section derives the local form of conservation of mass, and also presents a useful
material derivative relation.

Theorem 2.8.1 (Local Conservation of Mass) Local conservation of mass equiv-
alent to (2.28) is

P + PVk,k = 0. (2.70)
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Proof. Taking the material time derivative of (2.28), using (2.22)

V (  + pvk k) dV = 0, (2.71)

and taking (2.71) for arbitrary volumes V (postulate of localization) proves (2.70). m

Proposition 2.8.2 (Material Derivative Relation) Any spatial field 0 satisfies
the following identity for integrals over a material volume V

Jt dV = dV . (2.72)

Proof. Consider an aribtrary function 0. Using (2.21) and conservation of mass
(2.70) we obtain the useful relation

drypOd fv d  kd
S-JP)dV = -(pC) + (¢)Vk,kdV,

f fP + 0 + +k,k) dV,

= f p dV.

2.9 Balance of Momentum

Expressions for electromagnetic body force density fA acting on deformable continua
have been derived in DIXON & ERINGEN [9], MAUGIN & ERINGEN [17], ERINGEN

& MAUGIN [11] based on volume (space) averaging techniques, and in DE LORENZI

& TIERSTEN [8] based on a well-defined interpenetrating continua model. The DE
LORENZI & TIERSTEN paper is a generalization of earlier works by TIERSTEN [30]
and TIERSTEN & TSAI [35].

Definition 2.9.1 (Electromagnetic Body Force) A polarizable, magnetizable, and
electrically conducting deformable media will experience an electromagnetic body force
per unit volume in Bt (to a first approximation) of the forml °

fE = q Ei ± Pj + eJkvJPBk, n + peijkIljBk + MnBn,i + CikJjBk. (2.73)

H~i P. Ml =AM + (V X P)i.
P

Introducing approximation (2.47) eliminates magnetic force density terms from (2.73)
resulting in the electric body force density definition.

10 See DE LORENZI & TIERSTEN [8, eq. 3.44, p. 944]. Equation (2.73) is equivalent to ERINGEN
& MAUGIN [11, eq. 3.5.26, p. 59]
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Definition 2.9.2 (Electrical Body Force) A polarizable and electrically conduct-
ing deformable media will experience an electric body force per unit volume in Bt (to
a first approximation) of the form

fiE = qFEi + PjEij. (2.74)

Proposition 2.9.3 (Electrical Stress Tensor) The electrical body force density fiE

defined by (2.74) can be written as the divergence of a second order tensor r-

fiE E (2.75)

E = +
T PjE, IE.EjE, -2E 0 EkEk6jj,

=DjEi _ UFj. (2.76)

Proof. Taking divergence of (2.76) and using (2.52), (2.45), and (2.56)

E = 1Tj i, j = (Dj Ej) j - 2 (Ekfk6ji),j,

= Djjf + DjEij - coEjEj,i,

= qFEi + PjEij.

Theorem 2.9.4 (Local Balance of Momentum) Local balance of momentum state-
ments equivalent to (2.29) are

( , + ) + p (f, - b,) 0 o, (2.77)

,rj, + fiE + p (f, - b,) = 0. (2.78)

Proof. From (2.72)

d-fv ,dV =fvOhdV.

and noting

f[t (nj) + t-(nj)] dS j fri +rjj')njdS,

V(,j + rjj),J.dV

our balance of momentum statement becomes

S[+(,- +v+] idV. (2.79)

Taking (2.79) for arbitrary volumes V (postulate of localization) proves (2.77). Using
equation (2.74) in (2.77) proves (2.78).

38



2.10 Balance of Moment of Momentum

An expression for the electromagnetic body couple density Cr in deformable con-
tinua is derived in ERINGEN & MAUGIN [11] based on a volume (space) averaging
techniques.

Definition 2.10.1 (Electromagnetic Body Couple) A polarizable, magnetizable,
and electrically conducting deformable media will experience an electrical body couple
per unit volume in Bt (to a first approximation) of the form1

CE = PxE+MxB+vx(PxB). (2.80)

Introducing approximation (2.47) eliminates magnetic couple terms from (2.80) re-
sulting in the electrical body couple definition:

Definition 2.10.2 (Electrical Body Couple) A polarizable and electrically con-
ducting deformable media will experience an electrical body couple per unit volume in
Bt (to a first approximation) of the form

Cr = eijkPJEk, (2.81)

CE = PxE.

Theorem 2.10.3 (Local Balance of Moment of Momemtum) Local balance of
moment of momentum equivalent to (2.31) is

"rnj] = E[nPj]. (2.82)

Proof. Noting

fs EknJj~nn dS f6n~~i, dV

= knje (Xekn j + x.Toj,i) dV ,

= Ve kJ (SiTij + Xnij,) dV,

= knj (Trh + xnr 0,i) dV. (2.83)

Using (2.21)

knjn/vj dV = J -[ (EknjXnpVj) + CknjXnPVjVk,k dV,

f £knj (VnpVj + Xnpvj + Xnfp1j + XnpVjVk,k) dV. (2.84)

"See ERINGEN & MAUGIN [11, eq. 3.5.32, p. 60]
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Using (2.83) and (2.84), (2.31) becomes

fV Eknj [Xnv ( + PVk, ) - Xn (-, + pj + tf + 'rij, i) - rnj] dV

= f C dV. (2.85)

Using (2.70) and (2.78), (2.85) becomes

JV (--kjl-j + cE) dV =0 -4 Eknjraj + ChE 0. (2.86)

Recalling (2.81), (2.86) becomes

knj (rnj + PnEj) = 0 - 7 nj] + P[nEj]= 0,
T [nj] = -P[nEj]. (2.87)

Using the anti-symmetric relationship

-PEnEj] = E[.P].

in (2.87) proves (2.82). U

Definition 2.10.4 (Partial and Total Stress Tensors) The partial and total stress
tensors TP and IrT are defined as

rj = rj i + PE, (2.88)
rT = rii + r, (2.89)

= rj, + DjfE - UF 61 . (2.90)

The stress tensors rP andr T defined above appear in our presentation of the consti-
tutive equations.

Proposition 2.10.5 (Symmetry of Partial and Total Tensors) Tensors U and
' are symmetric

r, =0 (2.91)
'T =0 (2.92)

Proof. Recalling the fact

EUPI] = -PUE,]

and using (2.82) we obtain the anti-symmetric part of rji as

i] = -PEi]. (2.93)

40



Introducing the S/A decomposition of TrF and using (2.93)

P =
3ti T,(j) +70]

- T(ji) + Tui] + P(jE 0) + PUEj]

- T(ji) + P(jEj) (2.94)

Equation (2.94) proves (2.91). Similarly decomposing rT and using (2.93)

j = T +T

= T(ji) + T[,ji + P(jE,) + PUEi] + ,oEjE, -UFj

= T(j,) + P(jE,) + EEjE -VF6 (2.95)

Equation (2.95) proves (2.92). M

2.11 Electromagnetic Power
12 Expressions for the electromagnetic power density E for deformable continua have

been derived in DIXON & ERINGEN [9], MAUGIN & ERINGEN [17], ERINGEN &
MAUGIN [11] based on volume (space) averaging technqiues, and in DE LORENZI

& TIERSTEN [8] based on a well-defined interpenetrating continua model. The DE

LORENZI & TIERSTEN paper is a generalization of earlier works by TIERSTEN [30]
and TIERSTEN & TSAI [35].

Definition 2.11.1 (Electromagnetic Power Density) A polarizable, magnetizable,
and electrically conducting deformable media has electromagnetic power per unit vol-
ume in Bt (to a first approximation) of the form"3 .

E= (PiEj,i + qFEj) vj + EpHi + JE,-M, (2.96)
Pat

IHi -- A
PJ"l = j, q qFv, (2.97)

Mi -- M + (v x P).

Proposition 2.11.2 (Equivalent Electromagnetic Power) Electromagnetic power
density E is equivalent to

OPi .B,
=E, - M,- + JE + (EjPvj)j. (2.98)

12This section is based on THURSTON [26, pp. 157-163]
13See DE LORENZI & TIERSTEN [8, eq. 4.4, p.944]. Equation 2.96 is equivalent to ERINGEN &

MAUGIN [11, eq. 3.5.41, p. 61]
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Proof.

d (1 p=-P~ k

Using (2.70)

= p- + p-Pppv,j,
Pi, = P + P, k , (2.99)

- o + VkPi,k + Pvk,k. (2.100)
Ot

Recalling the Maxwell equation (2.36),

- ,-Mi- - -j- + (v x P),(V x E),.

a~t a.t

Noting the vector identity,

(v x P)j(V x E)i = VkEi,kPi - PkEi,kvi,

we obtain

-M ,- - = -Bi + VkEi,kP - PkEi, kVi,

,=Ej OP'+ jPi jj+J E _ M OBj

+ vjE,jP + Evj P,j. (2.101)

Grouping terms to obtain (EiPvj),j in (2.101) proves (2.98). 0

2.12 Conservation of Energy: Electroelastic Con-
tinua

In this section we establish a series of equivalent statements for conservation of energy.

Theorem 2.12.1 (Conservation of Energy I) Conservation of energy for elec-
troelastic continua is

df ( -i,+E dV = / (E+ph+pfv) dV

+ f (tjvj - qni) dS, .(2.102)

, = pEiHf, + (PE, i + qFEj) vj + J'E,, (2.103)

Hi = A (2.104)

P
S = Ji - qFvt, (2.105)
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tj= rijni. (2.106)

Proof. Theorem 2.12.1 follows immediately from axiom 2.5.9 and definition 2.96
by introducing the EQS approximation (2.46).

Proposition 2.12.2 (Equivalent Electric Power Densities) Electric power den-
sity E is equivalent to

= pEjiII + PiEj,ivj + JjEi, (2.107)

E = EiPi + EiPivj,j + PiEj,ivj + JjEj, (2.108)
E O'i

E= + (PiEivj),j + JiEi, (2.109)at
aulF

(E x H E .s + (Pi Evj),j. (2.110)at '"'

Proof. Equation (2.107) follows immediately from (2.103) by using (2.105) and
canceling qFvi terms. From (2.99)

pE2fti = E Pb + EiPvjj.

Using this in (2.107) proves (2.108). Using (2.46) in (2.98) proves (2.109).

Remark 2.12.3 We can verify that (2.109) is equivalent to (2.108) in the electroe-
lastic approximation by noting Ej = -0,j implies

Ej,j = -O,ij =-¢,j = Ej,j.

Proposition 2.12.4 (Conservation of Energy II) Conservation of energy state-
ment equivalent to (2.102) is

df (1 lv± + PC + UF) dV fJ p (h+fv) dV

+f[Upvi - (E x HX'Qs + PjEjvi]nj d

+f(tiv -qini) dS. (2.111)

t = rijni. (2.112)

Proof. Adding the term

d f UFdV

to both sides of (2.102) with (2.110), use (2.19) to obtain

d f up dV = fv[ OX-+ uvi) V.

Canceling like terms and using the divergence theorem (A.1) proves (2.111). M
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Definition 2.12.5 (Total Energy) The total energy density U is defined

U - E + p-IuF -+ pU = pE + U f . (2.113)

Theorem 2.12.6 (Conservation of Energy III) Conservation of energy statement
equivalent to (2.102) is 14

d fX, += , f
Ttf ('pvivi + pU) dV V f [E,,A + (UP + EP,) vj~ + Pjjjj dV

+ f (JE, + ph + pfiv,) dV

+ f (tivi - qini) dS. (2.114)

Proof. Using (2.17) and (2.102) with (2.108) we can write

(1 pvivi + pU) dV V '(UP + UFv, ) dV 1pvivi dV,

= f" (IP + UFV,,, + EJ, + EPvj + PE,,,vj) dV

+ v (JEj + ph + pfvi) dV + s (tiv, - qin,) dS. (2.115)

Using (2.45) and (2.56) in (2.115) proves (2.114). M
Next we are interested in simplifying these integral expression and arriving at local
forms of energy balance.

Theorem 2.12.7 (Local Conservation of Energy Statements) Local conserva-
tion of energy statements equivalent to (2.102) with (2.108) and to (2.114) are

pi = EP + [,rj + EkPk61 j] vi,, + J'E, + ph - qj,j, (2.116)

p& = ED?, + [rk, + (Uv + EkPk),j] v,.j + JjE, + ph - qj,,. (2.117)

Proof. Using equation (2.72)

d (lpvivi + pU) dV -f(pvii' PU) dV. (2.118)

From divergence theorem

f (ti, - qin) dS f (,rjinv, - qin) dS,

= fv [(7-jivi),j - q1,j] dV. (2.119)

Using (2.118), (2.119), and balance of momentum

,rji,j + q FEi + PEi, j + p (fi - j) = 0.

14This form of the energy expression is motivated by THURSTON [26, eq. 13.47, p. 162]
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in (2.102) with (2.108) and (2.114) we obtain

fpidV =/[EilA ± EkPkvi,i + Tjivi,j + Ji~ + ph -qi,i] dV, (2.120)

p& dV = f [E.1i +/(U + jV, + rvj + JiEi + ph - qi,i] dV. (2.121)

respectively. Requiring (2.120) and (2.121) to hold for arbitrary volumes V (postulate
of localization) proves (2.116) and (2.117). M
The next integral form of the energy statement will be particularly useful when de-
riving jump conditions of the energy across a moving surface of discontinuity.

Theorem 2.12.8 (Conservation of Energy IV: Global Form) Conservation of
energy statement equivalent to (2.102) is 15

d (pviv, + pC + UF) dV =f p(h+fivi) dV

[(rij +rij) v-b (J ) + id) 2.12d2

where the convective derivative D* is defined in (2.66).

Proof. From (2.111), (2.56), and (2.55),

d f(Pvivi+PC+U-) dV fJp(h + fivi) dV

+ f~ [1.EkEkvi - i + ODi) 3 3 vj n dS

+ f (tijv - q) ni dS. (2.123)

Noting -ri' = D1Ej - (!)C.EkEkij)

lco i 1 1 12( -0Ek ± EEv, -

-CEkEkVi + PkEkvi = CEk+ Pk + -~ E~ ,EE'~
= DkEkVi - 1CokEk vi

2
= Tvj + DkEkvi - DjEjvj. (2.124)

Next consider the term we temporarily define as t,

t= f(DkEkvi- DEjvj)ni dS

- f (DEVi - DiEjv),i dV.

15This conservation of energy equation was derived by McCARTHY & TIERSTEN [20, eq. 3.13, p.
35], in the context of semiconducting continua.
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Introducing Ek =-,k,

Ek,j = -,jk = -€,kj = E,k.

then,

t = /f (Dkvi),i Ek + DivjEi,- Ej (Divj),i - Div3 E,1 dV

- , (JkVi), i Ek - Ek (Divk),i dV

= f ,k (Divk - Dkvi),i dV

- f [ - Dv,),] - q (Dvk - Dkv,),ik dV

.Noting that (Divk - Dkv;),ik = 0 and using (2.52),

t = f~[0 (DiVk -Dkv 1 ) j] kdV

= fo¢(Divk -Dkvi),i nk dS

f s (qFvk + Dvk,, - Dk,iv, - Dkv,,,) nk dS. (2.125)

Using (2.124) and (2.125) in (2.123) gives
d f P,,+ C+U

~ ~ VI S + E+ U ) dV =f p(h+ f ivi) dV + jf [r ~ ' .] n d
s €  v v  J +--- ni dS . (2.126)

+ f [0 (q vi - Ji- O'- Di,kvk + DkVi,k - DiVk~k)-q]fdS (216

Using J1' = Ji- qFvi and (2.13) in (2.126) gives,

W- GP~vj P +UpdV = f p(h + fvi)dV

+, [(ri, +,r) vj +0 q(-J '- vi + ,k-Divkk)-q,]n dS. (2.127)

Finally using (2.66) in (2.127) proves (2.122).

Theorem 2.12.9 (Conservation of Energy IV: Local Form) The local form of
conservation of energy statement for (2.122), in terms of the function U = C+ p-uF,

is

pU = ph + (7ij + 7-,) vj, i + Ei (J + D*) - q,i (2.128)

Proof. Using (A.1), (2.72) and the postulate of localization with (2.122) gives,

pjvi + p& = h + pfivi vj(±) + (rT1 ±r) V3,
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- ¢,,(J +D*)- ¢(J '+D),i-qi,,. (2.129)

Using (2.77) and (2.64) in (2.129) proves (2.128).

2.13 Entropy Inequality

Theorem 2.13.1 (Local Entropy Inequality) Local entropy inequality statement
equivalent to (2.33) is

0 ,- p- i: o (2.130)

pe + qi,i - qil-'E0, - ph > 0. (2.131)

Proof. Using (2.72)

d fv pql dV =fv pi? dV .dt

and noting

-inidS =f( ), dV.

we obtain

+ p dV >0 . (2.132)

Taking (2.132) for arbitrary volumes V (postulate of localization) proves (2.130).
Expanding divergence term in (2.130) and multiplying by E proves (2.131).

2.14 Surfaces of Discontinuity
16 In this section we generalize our global balance laws to include moving surfaces of

discontinuity.

Definition 2.14.1 (Discontinuity Surfaces and Lines) A surface (line) on which
a material or spatial field is not continuous, is called a surface (line) of discontinuity.

Discontinuity surfaces such as shock waves in nonlinear wave propagation problems
frequently arise in applications. In this section we derive generalized expressions for
Gauss, Stokes, and material time derivative theorems. These will allow us to extend
our global balance laws to include surfaces and lines of discontinuity. Application
of the postulate of localization will result in jump conditions that fields must satisfy
across such surfaces and lines.

16This section is based on ERINGEN [10, pp. 427-429]
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Recall the Gauss theorem for a spatial vector field Ak,

fvAk,kd V =! knkdS

where S is the material surface enclosing the material volume V in spatial coordi-
nates. We extend this theorem to regions containing a discontinuity surface with the
following theorem.

n~ Vk

Figure 2-2: Surface of discontinuity for generalized Gauss' theorem.

Theorem 2.14.2 (Generalized Gauss) A spatial field Ak defined over a material
volume V in Bt, bounded by surface S, and containing a surface of discontinuity a
satisfies the integral statement,

fssAknkdS f= o J ~kd +fZ[AklInk dS (2.133)
[Ak] A+ -A

V-u V++V -

S- = S++S -

where A+ and A'- are the limiting values of Ak as the discontinuity surface a is
approached from the positive nk side and negative nk side, respectively.

Proof. From the Gauss theorem,

fAk,kdV =f Aknk dS +L+Akni dS

f k k dV = f Aknk dS +LfAkn- dS

In the limit as o+ -+ a, n+ -+ -nk. In the limit as a- -+ a, n- -+ nk. Then taking
the limit as u + and u- approach the discontinuity surface a,

fv vAk,k dV = f++s Aknk dS " f I Ak I nk dS .(214

= ++- L48_ (2.134)
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Equation (2.134) proves (2.133).
We use this generalized Gauss theorem to obtain the following useful generalized

integral theorem.

Theorem 2.14.3 (Generalized Material Derivative Statement) A spatial field
4 defined over a material volume V in Bt and containing a surface of discontinuity a
moving with absolute velocity v1 k satisfies the integral statement,

d- fvofdV = f + Ov,,dV +jfb(vk -vkinkdS (2.135)

[Ak] = A+ - A -

V-0 = V++V -

S-r = S++S-.

Proof.

dtW- f +d +Jbkkdvqn/kn dS

t OV = f LO dV + ~kkd f vn Sd f0€ + ~nkdCdV = f,, L5 +v f fvkn dvn .

In the limit as a+ -+ or, n - -nk. In the limit as o- -o r, nj -+ nk. Then taking
the limit as o+ and o- approach the discontinuity surface o,

d f dV = J dV + CVknk dS-t v+v- v++v- at f+s-

- f [¢bvknkdS.

From the generalized Gauss theorem,

j OVknk dS = fV~~k, dV + !2OVkmnk dS

Then noting that vk commutes with . ] operator,

d _odV + (, k-+ ,,vk+ vk, k dV + f [¢(vk - )JnkdS.(2.136)

Using (2.13) in (2.136) proves (2.135). E
We will require a generalized version of Stokes's theorem to account for a line of

discontinuity in a surface S.

Theorem 2.14.4 (Generalized Stokes') A spatial field Ak defined over an open
material surface S in Bt, bounded by the line C, and containing a line of discontinuity
- satisfies the integral statement,

_Aidxi = f (V x A),nidS +f [Ail dxi (2.137)
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Figure 2-3: Line of discontinuity for generalized Stokes' theorem.

[A,] = A+ - A-

S-7 = S++S -

C-y = C++C - .

Proof. From Stokes' theorem,

L(V xA), nidS =f +Aidxi + f Aidxt

(Vx A),ni dS =f Adx, + fA dx+

In the limit as 7+ -+ 7, d4 -+ -dxk. In the limit as y- -+ -, dxj -+ dxk. Then
taking the limit as y+ and 7- approach the discontinuity line 7,

(V x A) nidS = Ai++ _Adxi - f [Ai] dx,

proves (2.137). M

2.15 Jump Conditions

In this section we use the generalized theorems derived earlier to obtain jump condi-
tions across surfaces of discontinuity. First we summarize in convenient integral form
the electroelastic EQS equations.

Proposition 2.15.1 (Integral EQS Electroelastic Equations: Spatial Form)

f (DiD + J) ni dS =0

Ei dxi = 0
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d f p dV =0
pv dV -r (f. +n) J dV 0

df 
(2.13)

v_ (I-PViVi+P +uF) dV =f p p(h +fivi)

I-cT (ij±~ + -r(b(J + D!) - qi] d

d phdV f dV qidSft o s, f~_- _o, 19 s

Jump conditions are obtained by applying the three generalized integral theorems
derived earlier and valid for volumes containing a surface discontinuity moving at
velocity vk. Applying the postulate of localization then results in differential equa-
tions derived earlier and new jump conditions across the discontinuity surface and
discontinuity line.

The above procedure is straight forward and will be illustrated for the balance of
momentum equation.

Example 2.15.2 (Jump Condition Calculations) Applying (2.133) and (2.135)
gives

d~ -,, (pv,) dV = k ] (pv,) + (pvj) vk,k dV

+ fnPvi(Vk-vk)I)nkdS (2.139)

f (-rji ±rj) nj dS =f (rji + r~ dV + f [rji ±r~j~njdS (2.140)

Using (2.139) and (2.140) in (2.138), the global momentum balance laws for a volume
containing a discontinuity surface moving with absolute velocity vk, becomes

dv [(PVi)+ (PVi) Vk,k] dV + jpv (vj- vi) - (i +±i-rJ) Inj dS

=_f._ (, + JI), +,pfi dV

From the postulate of localization we obtain

d (i) + (PVi)V,,k = (-ri + rJi ),) +pfi in V-a

[pv(i v - v'j) ] j = [i -, +,fl I nj across a.

The differential equation is equivalent to local form for balance of momentum we
derived earlier. The jump condition across the moving discontinuity surface a is new.

Here we summarize the corresponding jump conditions for the EQS electroelastic
equations in spatial fields.
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Proposition 2.15.3 (Jump Conditions: Moving Surface of Discontinuity)

[ Di + Ji ni = 0 across a

[0 =0 across 7

[Xk] =0 across a

[p(vk - vk) Ink =0 across ,

PVi(Vk - Vk)JIn, = 1Tji +rji I across oa

?(~VAv+ PC±F (v - vi)JIn -

[(ri + ri) vj - b(J' + Di) -qi Ini across a

[07 (Vj - v) I >! - [I[nj across o

Proposition 2.15.4 (Jump Conditions: Material Surface of Discontinuity)

[D! + Ji ni 0 across a

[0] =0 acrossy

[Xk] = 0 across a

[,Ti +rlj'Inj = 0 across a

[(rj+ r,)vj-¢(Ji'+ DI)-qini =0 across a

[]nj > 0 across,

2.16 Objective Fields and Reference Configurations
17 In this section we define the notion of an objective field. Objective fields are quan-

tities that are independent of observer or form invariant under observer transforma-
tions. In the following section we introduce three axioms of constitutive theory. One
of these requires that material response functions be independent of observer, that
is, objective. This notion is then used to deduce restrictions on the allowable class
of material response functions. For example, material objectivity restricts a scalar
function depending on the deformation gradient Xi,K, which is not an objective func-
tion, to a scalar function depending on the strain tensor EJK, which is an objective
function. In this manner, the strain tensor arises naturally in the mathematical de-
scription of material response. Next we introduce change of reference configuration.
Material symmetries can be characterized by a required invariance under a class of
reference configuration transformations.

Prior to stating our definition of objective fields, we define arbitrary line elements
dxl, dX2 in Bt and line elements dX 1, dX 2 in B1. Under an observer transformation

"'This section is based on OGDEN [21, pp. 133-137] and GURTIN [15, pp. 165-175]
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(2.1) the material line elements remain unchanged and spatial line elements transform
as,

dx* = Q(t)dxk for k=1,2.

Definition 2.16.1 (Objective Fields) Objective scalar, vector, tensor, and two-
point tensor fields with domains both in T and T are defined according to transfor-
mations under a change in observer. Consider the following fields,

* A spatial scalar field q

* A material scalar field P)

* A spatial vector field A = Ajij

* A material vector field H = HKiK

* A spatial tensor field B = Bijii g ij

* A material tensor field M = MRSiR ( is

* A spatial two-point tensor field G = GKiiK 0 ii

* A material two-point tensor field F = FKii 9 ig

These fields are said to be objective if,

(*, t*) = (Xt),

V* (xt*)= 4)(X,t)

dx*'A*(x*,t*) = dxl'A(x,t),

dX 1 'tt* (X,t*) = dXI'H(X,t),

dx*'B* (x*,t*)dx = dxl'B (x,t)dx2 ,

dXiIM*(X*,t*)dX 2 = dXl'M(X,t)dX 2,

dXl'G* (x*, t*) dx = dX 1 'G (x, t) dxl,

dx*'F*(X,t*)dX1 = dxl'F(X,t)dX1.

Recall, for example, that 0* (x*, t*) and q (x, t) are quantities associated with the
same event as recorded by two different observers, 0* and 0 respectively.

Remark 2.16.2 (Objective Fields) Definition 2.16.1 implies the following trans-
formation requirements for objective fields under a change in observer (2.1):

* (W*,t*) = ¢(*,t). (2.141)

V (X, t*) = ) (X, t). (2.142)

A* (x*, t*) = Q(t)A(x,t). (2.143)

H* (X,t*) = H(Xt). (2.144)

B* (x*, t*) = Q(t)B(xt)Q(t)'. (2.145)
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M* (X*, t*) = M (X, t). (2.146)

G* (x*,t*) = G(x,t)Q(t)'. (2.147)

F* (X, t*) = Q(t)F (X, t). (2.148)

Definition 2.16.3 (Change of Reference Configuration) Achange of reference
configuration is a deformation r., that takes B to a new reference configuration Io
and takes material points X to new material points X,

K 0 :t% -4 &,
Ko:X - -X.

We write

9o= o0 (3o)
X = K(X)

2.17 Axioms of Constitutive Theory
18 We introduce three axioms of constitutive theory that must be satisfied by any

material response or constitutive equations. These axioms will be used to restrict the
class of equations that may describe' material response.

Axiom 2.17.1 (Admissibility) The constitutive equations must be consistent with
the fundamental axioms of electromagnetics and thermomechanics.

Axiom 2.17.2 (Material Objectivity) The constitutive response functions must
be independent of observer.

Axiom 2.17.3 (Material Symmetry) The constitutive response functions must be
scalar invariant with respect to a group of transformations of the reference configura-
tion representing the material symmetry conditions.

Recall, an observer transformation (2.1) that takes (x, t) to (x*, t*) is interpreted as
a change in observer from 0 to 0*, such that the event recorded by 0 at (X, t) is
the same event as that recorded by 0* at (x*, t*). Consider a scalar E, vector f, and
tensor A defined over Bt corresponding to a particular event at (, t) as recorded
by 0. If 0* observes this same event, measured at (x*, t*) according to 0*, then
0* must necessarily measure the scalar as e* = e, the vector as f* = Q(t)f, and
the tensor as A* = Q(t)AQ(t)'. In other words, the observers 0 and 0* measure
the same event. An event is necessarily independent of observer, and therefore the
scalar, vector, and tensor quantities corresponding to the event are objective fields,
and transform according to remark 2.16.2 under an observer transformation. Consider
an event, with corresponding fields e, E, E, D, J', ,T measured by 0 at (x, t). These

"SThe axioms are based on ERINGEN & MAUGIN [11, pp. 133-144]
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fields are necessarily objective fields, and transform according to remark 2.16.2 under
a change of observer.

The axiom of material objectivity requires that material response functions are
independent of observer. Here it is important to distinguish between the material
response function, and its value. Material objectivity is a powerful axiom that imposes
restrictions on the set of admissible material response functions. The next section
clarifies this discussion with some examples.

2.18 Constitutive Function Restrictions
19 Suppose we deduce or assume the following constitutive equations relative to the

reference configuration 3o,

'E(X,t) = (X(X,t)),
E(x,t) = (X(X,t))

T(x,t) = f(X(X,t))

As remarked in the previous section, the fields E, E, and r transform objectively
under a change in observer,

= E(X,t),
E*(x*,t*) = Q(t)E(x,t),

r* (x*,t*) = Q(t)r(x,t)Q'(t).

Using the constitutive equations we obtain,

E*(X*,t*) = (x(X,t)),

E*(x*,t*) = Q(t)E(x(X,t)),

T*(X*,t*) = Q(t)i(x(X,t))Q'(t).

The axiom of material objectivity requires the material response functions , E, and
f to be the independent of observer. This implies

E*(X**,t*) = (X* (X,t*

E*(x*,t*) =i(X*(X,t*)),

-* (X*, t*) = (x* (x , t*))

and therefore,

(X(X,) = (x* (X) t*))

Q(t)E(x(Xt)) = ,(X*(Xt*)),

19See COLEMAN & NOLL [7, pp. 170-173], TRUESDELL & NOLL [36, pp. 41-47], and GURTIN [15,
pp. 143-145] for a discussion of constitutive function restrictions and the principle of objectivity
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Q(t) (x(X,t))Q'(t) = (x (Xt*)).

These equations are the mathematical statement of material objectivity, and must be
satisfied by e, E, and -" for all possible proper orthogonal Q(t).

Next, we write the deformation gradient in direct notation as

F = 8 X (X, t)
OX

To make the restrictions more explicit, suppose we deduce or assume the constitutive
equations are

=
cE(x, t) = ,(F) ,

E (x,O t) (F).,

Under a change of observer, F transforms as

, OX*(X,t)
ex

= Q(t)F.

From our previous result, the axiom of objectivity imposes the following restrictions
on the material response functions,

i(F) = (Q(t)F)

Q(t)E (F) = (Q(t)F)
Q (t) +(F) Q'(t) f (Q (t) F) .

Next we consider the restrictions imposed by the axiom of material symmetry on
the constitutive functions. Consider the change in reference configuration from B0
and F,

'K(X) = S'X

S'S = SS'=I
det(S)-- 1.

The motion with respect to the new reference configuration is

We write

=
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X -
The deformation gradient with respect to the new reference configuration is

-- oX

=FS

With respect to the two reference configurations B, and -o, the constitutive equations
are

E(x,t) = (F)
E(x,t) = (F)

r(x,t) = (F)

-r(x, t) = P

Suppose that the response of the material relative to Bo is always indistinguishable
from that relative to Bo for all proper orthogonal tensors S in the set of transforma-
tions S, such that

e - e (F) (FS)

E-E - k(F)= (FS),
-= -T lF)*=i(FS).

The set S is said to characterize the symmetry of the material relative to the reference
configuration B,,. If we replace F with FS' we obtain

i(FS') = e(F),

k(FS') =. (F).

This shows that if S E S then S' E S. Combining the imposed restriction from ma-
terial symmetry with the imposed restriction from material objectivity and choosing
Q = S, implies the restriction that the response functions are invariant under S,

i(F) = (SFS'),

SE(F) = (SFS'),
Si-S'(F) = -"(SFS').
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2.19 Constitutive Equations: Spatial Fields

This section uses the conservation of energy and entropy inequality equations, under
the axiom of admissibility, to derive restrictions on material response functions. The
result is a set of relations between material response functions and partial derivatives
of a scalar energy response function.

The axiom of admissibility requires material response functions to be consistent
with the fundamental axioms of electromagnetics and thermomechanics, in particular
the conservation of energy and entropy inequality equations. It is useful to form
the so-called Clausius-Duhem (C-D) inequality by eliminating the heat flux and heat
source terms from the entropy inequality (2.131) and conservation of energy equation,
either (2.116) or (2.117). The resulting inequality is required to be satisfied for all
independent processes. The resulting necessary and sufficient conditions yield general
constitutive equations that govern material response. These constitutive equations
are in terms of first derivatives of energy functions, or &. The axioms of material
objectivity and material symmetry can then be applied to deduce further restrictions
on these equations.

Proposition 2.19.1 (Local C-D Inequality Statements: Spatial .Fields) The lo-
cal form of the C-D inequality statements are

pO - p + EiF + (-rji + EkPk61 j) vij, + JiE, - qiE-'e, > 0 (2.149)

pO - pUr + E,1, + [, + (Up + EkPk)J2 j] vij + JiE - qE-'e,, 0 (2.150)

Proof. The C-D inequalities are obtained by eliminating (qi, i - ph) from the entropy
inequality (2.131) using conservation of energy statements. Reodering (2.116) and
(2.117)

q,,- ph = -pi + Eii + (Tji + EkPkisj)vi,j + J'E

qi, - ph = -pU + ED, + + (UF + EkPk)6I] vi,j + JE,

and using in (2.131) proves (2.149) and (2.150).

Consider the following,

dt

Then equations (2.149) and (2.150) together with (2.151) motivate the assumption
that

f = (7h P,xi,K) (2.152)

U = (hDi, Xi, K) (2.153)
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Taking the material time derivatives of (2.152) and (2.153),

7 7+0  pPi+ a (Xi, K ) (2.154)o= l./ O-LT. i  
__i Kdt

= u - -+ W+ (XiK). (2.155)
- -7iv j a (XiK)dt

Using (2.154) and (2.155) in equations (2.149) and (2.150) respectively we obtain

+ ( Eji+EP.6ij) XKJ P -(Xi, K) > 0 (2.156)
dt

p (0 - -&) i + -E - & i +- J'Ej - qiO-1O, i

+ (7,+ (U F + E ,P )j] XKJ P00( ) )d(xXK) > . (2.157)

Inequalities (2.156) and (2.157) are linear in i , P, xj, and ,)i, TD , j respectively,
and must be satisfied for all independent variations of these quantities. Necessary
and sufficient conditions are

J Ej - qie-O,i > 0

= (2.158)

E,= pa,, (2.159)

(rji + E.P, jj) XK,J = P0 (xiK) (2.160)

and

JjEj - q - >0

e = au (2.161)

E= =PD (2.162)

rj, + (UF + E.P.) sj] XKJ = PO a (2.163)

Equations (21158) - (2.160) and (2.161) - (2.163) are restrictions imposed by combined
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statements of balance of energy and entropy inequality, as required by the axiom of
admissibility. The energy functions and U can not be arbitrary functions of their ar-
guments, they must satisfy the axiom of material objectivity and material symmetry.
Instead of deriving these conditions here, it turns out the material objectivity will
be satisfied if the constitutive equations are derived from the C-D inequality written
in terms of material fields, as introduced in the next section. See TIERSTEN [28, pp.
1309-1310] for an example of material objectivity calculations.

Next we derive the heat conduction equation by simplifying the conservation of en-
ergy equation with the constitutive equations. Substitute (2.158)-(2.160), (2.154) and
(2.161)-(2.163), (2.155) into the energy equations (2.156) and (2.157), respectively.
Both result in a heat conduction equation,

p@ + qi,i = ph + JiEi.

2.20 Material Fields

In this section we introduce material fields. In typical continuum mechanics problems,
the material points Xk in the deformed body Bt are part of the solution, and therefore
unknown a priori. Loading and boundary conditions are usually known at material
points XM on the undeformed body I3o. The fundamental axioms and resulting
differential equations and jump conditions are stated in terms of spatial fields defined
over the deformed and a priori unknown body Bt. It can be convenient, in particular
for approximate theories, to rewrite the equations in terms of fields defined over the
known reference configuration Bo. Transformations of arc, area, and volume (2.5)-
(2.7) relating elements in Bt to elements in Bo can be used to introduce relevant fields
defined over B,. These fields are called material fields and are introduced below.

Consider a spatial scalar field qF. A corresponding material field QF can be
defined such that the volume integral of QF over a material volume V in B0, is equal
to the volume integral of qF over the corresponding material volume V in Bt,

JQFdV =fqldV. (2.164)

The required relationship between QF and qF can be derived using (2.7),

fv 0 QF dVo = fV qF dV

= fvoqFJdVo.

The material field QF required to satisfy (2.164) is then,

QF = jqF.

Consider a spatial vector field Di. A corresponding material field Dj can be defined

such that the surface integral of VDj over a material surface S. in t3o is equal to the
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surface integral of Di over the corresponding material surface S in Bt,

fSo DJNJdS. = fsD nidS. (2.165)

The required relationship between Vj and Di can be derived using (2.6),

fSo EVjN dS = fs Dni dS

= Lso DiJXj, iNs dS

The material field Dj required to satisfy (2.i65) is then,

Ds = JXjiDi.

Consider another spatial vector field Ei. A corresponding material field Ej can be
defined such that the line integral of Sj over a material line C in J3o is equal to the
line integral of Ei over the corresponding material line C in Bt,

fC. (2.166)

The required relationship between gS and Ei can be derived using (2.5),

J gdXj = JEdxi

=fc Eixi, JdXj.

The material field &j required to satisfy (2.166) is then,

Es = xi, jEj.

We note, the same defintion for Ej would have been obtained if it were defined in
terms of DK, Ej, and Dj by,

fv s:DsdV = fvEDj dV,

Definition 2.20.1 (Material Fields) For convenience we define all material fields
below. Their definitions will be motivated in the proofs that follow.

QF = JqF _ qF = j-lQF (2.167)

P = JXi - P = J-'xi,,Pj (2.168)

ED, = JX, iDi " Di = J-'xi ,aV., (2.169)

j -- xjjEj -4 Ei = X, Xs (2.170)

J* , = JX.,iJ -+ J = jx i, ,sJ (2.171)

61



Qj = JX q "-+ q, = J-'xi,jQj (2.172)

T., = JXs,jrj -4 lr= J-1 Txj,s (2.173)

TA = JXs,jrj -+ rfJi xj, sT! (2.174)
S= JXS, JXR,, " i = J-Xj, SXi,RTsPR (2.175)

T = Jxs,XR,,ir - r r=-xj,sxi,R-SR (2.176)

2.21 Equations in Material Fields
20 The material form of the thermomechanical and EQS Maxwell equations will be

systematically derived by integrating the local equations over a material surface or
volume in Bt and introducing the appropriate transformations of elements of arc,
area, or volume in 3o. The resulting expressions are the global material forms of the
original local spatial equations.

Theorem 2.21.1 (Global EQS Maxwell Equations: Material Fields) The global
form of the EQS Maxwell equations is,

VjNj dS° = f QF dV, (2.177)

fCe EdX, = 0, (2.178)

,dfvQF dVo f JSNjdSo = 0. (2.179)

Proof. Integrate (2.52) and (2.54) over a material volume V in spatial coordinates
and integrate (2.53) over a material surface S in spatial coordinates, and using (2.22),
(A.1), and (A.2),

fsDni dS = fVqF dV, (2.180)

fCEi dxi = 0, (2.181)dF

fJndS + f q dV - fq v,nidS = 0. (2.182)

Using (2.97) and introducing transformations (2.5)-(2.7) in (2.180)-(2.182) gives

fsDiJX, iNs dS = 4J qFJdVo, (2.183)

-. = 0, (2.184)

d q J dV+ fJiXs, Nj dSo = 0. (2.185)

2 Conservation of energy equations in material fields are based on THURSTON [26, pp. 157-165]
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Using (2.167), (2.169), (2.170), and (2.171) in (2.183) - (2.185) proves
(2.177) - (2.179).

Theorem 2.21.2 (Local EQS Maxwell Equations: Material Fields)

V , QF, (2.186)

EIJKEK,J = 0 -- J = -0¢,J, (2.187)

j + j/,j = 0. (2.188)

Proof. Noting the material time derivative commutes with the volume integral over
a material volume and using (A.1) and (A.2) in (2.177)-(2.179) and requiring the
integrals hold for arbitrary volumes V and surfaces S, in the appropriate relations
(postulate of localization) proves (2.186)-(2.188).
It will be convenient to work with a reduced form of the EQS equations.

Theorem 2.21.3 (Reduced EQS Maxwell: Integral Form and Material Fields)

f~~N (1jNdS, = 0

fC j dXj = 0

Proof. Immediate consequence of (2.180)-(2.182).

Theorem 2.21.4 (Reduced EQS Maxwell: Local Form and Material Fields)

-= 0
EIJKEK,J = 0 -- J = -¢,J.

Theorem 2.21.5 (Conservation of Mass: Material Fields) Global and local con-
servation of mass in material form is equivalent to (2.28) is

jfPdV = fpodV,' (2.189)

JP = Po. (2.190)

Proof. Equation (2.189) is a restatement of axiom 2.5.6. Using (2.7), (2.189)
becomes

f (Jp - po) dVo =0.

Using postulate of localization proves (2.190).
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Theorem 2.21.6 (Balance of Momentum: Material Fields) Global and local bal-
ance of momentum in material form is

Iso (Tj1 + T) Nj dSo + f po (fi -t6) dV = 0, (2.191)

(Tj, + T ,+ Po (fi - iJ) = 0. (2.192)

Proof. Integrate (2.77) over a material volume V in spatial (deformed) coordinates

and use the divergence theorem (A.1),

is(,j j) idS+ p(i )dV = 0. (2.193)

Using the transformations (2.6) and (2.7) in (2.193),

i + Tf) J~j, i o + p (fi - t) J dV = 0. (2.194)

Using (2.173) and (2.174) in (2.194) proves (2.191). Using divergence theorem (A.1)
in (2.191) and requiring to hold for arbitrary volumes V (postulate of localization)
proves (2.192). N

Theorem 2.21.7 (Symmetry of Partial and Total Tensors: Material Fields)
The material stress tensors 7S and 7"sR are symmetric,

[TSR] = 0, (2.195)

[SR] = 0 (2.196)

Proof. From (2.91),

T, = T. (2.197)

Introducing (2.176) into (2.197),

TRXj,SXi,RJ 1 = T NXi,MXj,NJ (2.198)

Multiplying (2.198) by JXs,jXR,i gives,

TsR= X S, iX R, iXi, M Xj, N'TN,

= bSN6RMTMTN,

=7 TRS. (2.199)

Equation (2.199) proves (2.195). Repeating the calculations using (2.91) and (2.175)
proves (2.196). 0

Prior to establishing the material forms of local conservation of energy expressions,
we must derive total derivative expressions.
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Proposition 2.21.8 (Material Derivative: Spatial and Material Field) Defining
j= JXjiAi, the material derivative of Ai is

Ai - jxi,jJ - 1 + Akvi,k - Aivk,k. (2.200)

Proof. Taking the material derivative of Ai

d
Ai = Aixi, jJ - 1 + Ai- (xi j) J 1 - Axi, jJ- 2 J

Using (2.14) and (2.201),

d= Vi,J= (2.201)

proves (2.200). U

Lemma 2.21.9 (Local Conservation of Energy) Local conservation of energy equa-
tions equivalent to (2.116) and (2.117) are

= tjbjJ -1 + P .JEj + ph - qjj(2.202)
pi= ilJ ',jivi,j +J (2.202)

p& = .16j- 1 + ?vi + JE. + ph - qi,i (2.203)

Proof. Using theorem 2.21.8, Pi and !?i are,

PA = xji, J - 1 + Pkvi,k - Pvk,k, (2.204)

A = jxi,jJ - ' + Dkvi,k - DiVk,k. (2.205)

Using (2.170),(2.190),(2.204), and (2.205) in (2.116) and (2.117) obtain

p = -- jJ - ' + [Tji + PjEi] ,, + J 1Ei + ph - qi,i (2.206)

p& - Ej5jj + [ni, + DE, - UF, 6j] vi,j + JjE, + ph - qj, (2.207)

Rewriting (2.206) and (2.207) using (2.88) and (2.90) proves (2.206) and (2.207) •

Definition 2.21.10 (Strain Rate Decomposition) The S/A decomposition of v1,j
is defined as

dij = v(j,j) , wij= vi,]
vij = dij + wij (2.208)

Proposition 2.21.11 (Partial and Total Stress Power Densities) Stress power
densities TgiVi,j and T Vij simplify to

Tri j= rjidij (2.209)

Vi~i i = 4Tdi (2.210)
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Proof. Using (2.91) in the form rji = T"{ji)

P P
Irivi,j = Tr()vi,j

= T(ij)(dj + wij)

Equation (2.210) is similarly proved using (2.92) in the form rji = T

Proposition 2.21.12 (Symmetric Strain Rate: Material Fields)

dpq = XR,pXS,qERS

Proof.

CRS = Xk,RXk,S=6fRS+ 2 ERs

CRS = Vk,RXk,S+Xk,RVk,S= 2ERS

Multiplying through by XR,pXs,q

XR,pXS,qCRS = Vk,p 6 kq + bkpVk,q = 2 XR,pXs,qERs

or

Vq,p + Vpq = XR,pXS,qCRS = 2XR,pXs,qERs

From (2.208)

dqp = (Vq,p + Vp, q)

1 XR,pXSq6RS (2.211)

= XR,pXS,qERS (2.212)

Proposition 2.21.13 (Partial and Total Stress Power Densities: Material Fields)
Stress power densities ri vi ,j and rjvi,j are identically

rjivi,j = rjXR,iXS,jERS (2.213)
7jivij = 'rTiXR,iXS,jERs (2.214)

Proof. Equation (2.209) with (2.212) proves (2.213). Similarly, (2.210) with (2.212)
proves (2.214). 0

Theorem 2.21.14 (Local Conservation of Energy: Material Fields) Global and
local onservation of energy statements equivalent to (2.116) and (2.117) in material
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fields are

Poe = £J7lJ + TSPERs + Jj.j + poh - Qjj (2.215)

poU = Fjg5 + T"Rks + Jj + p h - Qjj (2.216)

Proof. Integrate (2.202) and (2.203) over a material domain V in spatial coordinates
and use the divergence theorem (A.1),

p = f +4 + +p)dV - jqjni dS, (2.217)

fJp& dV = f. ( ~iJ-1+ Tji i,j + JE + ph) dV - qini dS. (2.218)

Introducing transformations (2.6) and (2.7) gives,

p JV = J (V', + vj + JEj + ph) J dV

- j fqJXj, i N dS. (2.219)

pUrJ dV = ( jlJ -l + 5ivi, i + J!iE + ph) J dVo

- fqiJXj, iNdSo. (2.220)

Using (2.190), (2.170), (2.171), (2.172), (2.175), (2.176), (2.213), and (2.214) in
(2.219) and (2.220) gives,

p 0 dVo v = i (E + A + TSRRS + Jj' + ph) dV 0

- fQJNJdS (2.221)

fpodVo = fV (e, +i + TRkRs+ gj ,+ poh) dV0

- SoQJNjdSo. (2.222)

Using the divergence theorem (A.1) in (2.221) and (2.222) and requiring the result
to hold for arbitrary V proves (2.215) and (2.216).

Theorem 2.21.15 (Global Conservation of Energy: Material Fields)

dJ(f pviv +±POu dV =fp(h+ fivi) dV+

fS. [(Tij Tj) vj - 0 (aj' + i) - Qj Ni dSo (2.223)

Proof. Using (2.200) and (2.66),

Dj = A + Divk,k - DVi, k

bD = D*JXj, j. (2.224)
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Using (2.224), and appropriate entries from definition 2.20.1 in (2.122) proves
(2.223).

Theorem 2.21.16 (Entropy Inequality: Material Fields) Global and local en-
tropy inequality statements equivalent to (2.130) in material fields are

podVo+f9i dSo- f po-dVo > 0, (2.225)

po8e + Qj,j - QjE)-E,j - poh > 0. (2.226)

Proof. Integrate the product of e with (2.131) over a material volume V in spatial
coordinates and using the divergence theorem (A.1) obtain

fP7idV + s1-nj dS - fp p hdV > 0. (2.227)

Using transformations (2.6) and (2.7) in (2.227),

f OpJdV + sqJX,,NjdSo -f phJ dV > 0. (2.228)

Using (2.190) and (2.172) in (2.228) proves (2.225). Using the divergence theorem
(A.1) in (2.225) and requiring the statement to hold for arbitrary volumes V,, and
multiplying the result by e proves (2.226).

2.22 Surfaces of Discontinuity: Material Fields

In this section we generalize our global balance statements in material fields to include
surfaces of discontinuity moving with absolute velocity vk. We note that Gauss and
Stokes' theorems remain unchanged for material coordinates. Therefore the deriva-
tions for generalized integral theorems are valid.

Theorem 2.22.1 (Generalized Gaussi Material Fields) A materialfield AM de-
fined over a material volume V in B,, bounded by surface So, and containing a surface
of discontinuity o, satisfies the integral statement,

fAM NM dS = AM, M dVo + f [AM INM dS (2.229)
Js7 Vo -G oT

[AK] = A+ +A-

O - 0o = YO2+Vo-
so- 0 = SO+SO_

Proof. Equation (2.229) is a restatement in material coordinates of (2.133). 0

Theorem 2.22.2 (Generalized Stokes: Material Fields) A material field AM
defined over an open material surface S0 in Bo, bounded by the line C, and con-
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taining a line of discontinuity -y, satisfies the integral statement,

fo-o AK dXK = f-o IJKAKjNIdS. + 1 [AK dXK (2.230)

[AKI = A+ + A-

S -% = s, + s,
Co-' = CO+ +CO

Proof. Equation (2.230) is a restatement in material coordinates of (2.137). m

Theorem 2.22.3 (Generalized Total Derivative: Material Fields) A material
field qJ defined over a material volume V in 3o and containing a surface of discon-
tinuity o, moving with absolute velocity vk satisfies the integral statement,

div- J dV f (qvk)J dV,

+ f [¢(Vk-Vk)JXJ,,kINJdSo (2.231)

[AKJ = AK + AK

So- 0o = yO++YO

Proof. Using theorem 2.4.8 in (2.135) and noting that normals nk and Nj commute
with the jump operator [.] proves (2.231).

2.23 Jump Conditions: Material Fields

In this section we generalize global balance statements to include surfaces of discon-
tinuity moving with velocity vk.

Proposition 2.23.1 (Integral EQS Electroelastic Equations: Material Form)

L~(15 J) NdSo = 0

J&JYOEdXJ = 0

dd J00 pJ dV = 0

- o = f 0o0 d + £0 (TJ, + T)NdSo

-dr (-pvivi + pU) J dV = I_-o Po (h + fivi) dV

+f [(ij + Tj)vj - 0(Jj' + bi) - Qi] d,

df p~iJdV f poh dVo f -NdS.6
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We obtain local differential equations and jump conditions by applying the generalized
integral theorems followed by the postulate of localization to the global balance laws.
The resulting local equations will be identical to those derived earlier, however the
jump conditions across the moving surface of discontinuity will be new. We present
an example considering the balance of momentum equation.

Example 2.23.2 (Jump Condition Calculation: Material Fields) Consider the
integral balance of momentum equations and apply the general integral theorems
(2.231) and (2.229),d

dtV0 T0 (pv1) JdV, = f~~ [Pvco vkk]JV

+ L[ Vi(Vk - vk)JX, kNdS

. (" + T) NSo = .f (T T. ),. dVo

+ fL [ TJ+Tji]NdSo.

Substituting these in integral balance law we obtain,.

~ ~ (p~ + ( v Yv~ ] d O poti (vk: - ik) X J,kJ N i dSo

fVI0o_°o [J0 (T., ± ),] dVo + L [Tii, +T]NdSo.

applying the postulate of localization we obtain

jdV kin V - aSd(pv,) + J (pv,) Vk='po h + (Tj, + Tii), J i o-
[ povi (vk - v) X,k I NJ = [T + TJN, ] g across ao

The local equations are equivalent to those derived before, however the jump condi-
tions that must be satisfied across a moving surface of discontinuity are new.

Proposition 2.23.3 (Jump Conditions: Moving Surface of Discontinuity)

[bi + J.j] Ni = 0 across ao

[0 4] =0 across 7

[Xk] =0 across o,

[ Po (Vk - Vk) XJ~k I N, = 0 across or,
[poV.(V-i/)X.,lY j= [T.+TfJ.]N across a0

1 P oVi VoV ('-)XJ, k IN h+ iINJ=arssa
I('-povivi + P0 U) (Vk - ik) XJ, I] N,

(T,, + Tj, ) v - ( ~j; ,) - Q, ] Nacross o 0
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QJ
por (k - vk) Xk Ng >- -I- NJ across a.

Proposition 2.23.4 (Jump Conditions: Material Surface of Discontinuity)

[j + ±J ] Yj = 0 across ao

[ 1 =0 across y

flxk] =0 across a,

[Tj + Tf Nj = 0 across co

I(Tj +T) vj q(j+ 5 1) -Qj Nj =0 across a,

S- ]Nj > 0 across a,

2.24 Constitutive Equations in Material Fields

In this section we derive restrictions on material response functions imposed by the
conservation of energy and entropy inequality equations, in terms of material fields.
The resulting material response functions satisfy the axiom of material objectivity
without further restriction. Additional restrictions will be imposed by the axiom of
material symmetry.

Theorem 2.24.1 (Local C-D Inequality Statements in Material Fields) The
Clausius-Duhem inequalities in material fields are

poO7- Po + £ 'J + TsPRERS + J' - QJee ,J > 0 (2.232)
pe i- p- t + e£bD + 7STRkRS + J&.J - QJE- 1e, > 0 (2.233)

Proof. Using (2.215) and (2.216) in (2.226) proves (2.232) and (2.233).
Equations (2.232) and (2.233) motivate the assumed functional forms

f= e (7,PJ, ERs) (2.234)

U = (J(7,Vj, ERS) (2.235)

for c and U. We note that e and U in this assumed form satisfy the axiom of material
objectivity, they are objective functions. Procedures identical to section 2.19 can
be used to obtain constitutive equations in terms of derivatives on the potential
functions. The result is a material characterization based on either e or U1, described
as functions of (r, Pj, ERs) or (t7, Vj, ERS). Characterizing a material in terms of
these fields may be inconvenient. Legendre transformations can be used to change
independent variables in the material response functions.

We introduce the following Legendre transformation to switch independent vari-
ables from 7 to the absolute temperature 9. Inspection of (2.232) and (2.233) moti-
vates

= C1 +O 7  -+ 1 ,=+ 7+ 0e (2.236)
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U = I2 +e7 -- 1 U= 2 ++ 7+EM. (2.237)

Based on this inspection we define the following Legendre transformations.

Definition 2.24.2 (Legendre Transforms I) Legendre transformations T, and '2

are defined as

Theorem 2.24.3 (Legendre Transformed C-D Inequality Statements) Local

Clausius-Duhem inequalities equivalent to (2.232) and (2.233) are

-Po (4I + 6,q) + S J0J + 'S, ERs + JJSj - Qje-'e,j > 0 (2.238)

-Po (' + ,7)+ +rERS + J .,J - Qje-le,j > 0 (2.239)

Proof. Using (2.236) and (2.237) in (2.232) and (2.233) proves (2.238) and
(2.239).
Equations (2.238) and (2.239) motivate the objective functional forms

Po"'1 = W, (9, Pj, ERS)

PoA1 2 = T2 (E, J, ERS)

Assuming these true

Pooe E) + jETJ-PRS s (2.240)
=-e±) p OERS

PoC2 = -S2+O'I---- 8' (2.241)

Using (2.240) and (2.241) in (2.238) and (2.239)

Ol ) ++-; (+OERS) ERS

+ JjSj - Qje)-e, j > 0 (2.242)

_ poq + + -_- _ MV o rR - 0 21 tR

+ j'Cj - Qje)-e,j > 0 (2.243)

Necessary and sufficient conditions are

= oe OR =- OEf (2.244)

jjCj - Qje-1e,j > 0
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and

PoO2 0-2 X =O2 (2.245)
00= aj--i'ERS

J j - Qsij-'e j >0

Theorem 2.24.4 (Legendre Transformed Conservation of Energy Statements)
Local conservation of energy statements equivalent to (2.215) and (2.216) are

Po (i + Oq+ 0) = j-Pj + TSPRERs + .j + poh - Qj,j (2.246)

PA (42 + Ol+ ) = jj+ 7sREs + JjJ + ph - Qjj (2.247)

Proof. Using (2.236) and (2.237) in (2.215) and (2.216) proves (2.246) and
(2.247).
We obtain our equations of heat conduction by simplifying the conservation of energy
equations (2.246) and (2.247).

Theorem 2.24.5 (Local Heat Conduction in Material Fields) The local heat
conduction equation in material fields is

po19 = jj j + poh - Qjj (2.248)

Proof. Using (2.244) and (2.245) in (2.246) and (2.247) proves (2.248). E
Another useful Legendre transformation changes the independent variables from

(7], Pj, ERs) or (,q, Dj, ERs) to (E, 6j, ERS). Inspection of (2.232) and (2.233) moti-
vates

-- = 3 + E)rq +£jlPjp 1  (2.249)

U T I4 + 077 + ,jDjpl (2.250)

which gives

= i3 + Eh1 + e + tjpjp-1 + eji Jp;1

& C = '4 + 6q7 + e + 4JDjpo 1 +bJpo 1.

Based on this inspection we define the Legendre transformations

Definition 2.24.6 (Legendre Transforms II) Legendre transformations T, and
TI2 are defined as

*3 = O E -  JPJP:0

X4 = U - E)7 - 6jEjp-1

Theorem 2.24.7 (Legendre Transformed Local C-D Inequality Statements I)
Local Clausius-Duhem inequalities equivalent to (2.232) and (2.233) are

-Po (43 + -77) -j j + 7s, rkRS + J, - Qje-' j > 0 (2.251)
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-Po (414 + o7) - VJ e + TsERS + JJIj - QJe-1e,j > 0 (2.252)

Proof. Using (2.249) and (2.250) in (2.232) and (2.233) proves (2.251) and
(2.252).

Equations (2.251) and (2.252) motivate the objective functional forms

PoA3 = T3 (E, J, ERS)

PoA4 = T4 (9, EJ, ERS)

Assuming these true

Po3 =-OX6 + 19T3 3 - (2.253)oE O +- OER

Po4f4 = -'0 + i9jO j + I- RS (2.254)
8E 06 +OERS

Using (2.253) and (2.254) in (2.251) and (2.252)

~PovoeJ tjJ + kSIR - 9ERS) R

+ Jj'j - QjE-8( j > 0 (2.255)

- PA?+11)± + 'j+2'4t + (SR OERS4) ERS

+ J&j' - Qj -le, j 0 (2.256)

Necessary and sufficient conditions are

Pao tAl O8a (2.257)P077 = wo ' i i ' I -- T R OER----

Jj - QjE)-E),j> 0

and

P07 4 W, = -= 7"SR = 9ERS (2.258)
por = O0'Os'OERs

J~j - QjE-IO,j > 0

Theorem 2.24.8 (Legendre Transformed Local Conservation of Energy II)
Local conservation of energy statements equivalent to (2.215) and (2.216) are

Po (i1 + 677 + eO) = -Pjtj + TSRkas + 3j'6j + poh - Qj, j (2.259)

Po (2+ 67 + Eoi) = -vDti + 77TRkRs + J'.& + poh - QJj (2.260)
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Proof. Using (2.249) and (2.250) in (2.215) and (2.216) proves (2.259) and
(2.260). u
We obtain our equations of heat conduction by simplifying the conservation of energy
equations (2.259) and (2.260).

Theorem 2.24.9 (Local Heat Conduction in Material Fields) The local heat
conduction equation in material fields is

po1i9 = Jj'Ej + poh - Qj, 1 (2.261)

Proof. Using (2.257) and (2.258) in (2.259) and (2.260) proves (2.261). 0

2.25 Equation Summary: Spatial Fields

Here we summarize the local equations and jump conditions for deformable electroe-
lastic continua with electric conduction, in terms of spatial fields 21

(D! + J),, = 0
Ei + O,i =0

p+ PVk,k = 0
(r,+ -rj)j+ p~i 0

T =0 where

p= (ri, + r-, ) vj,, + E, (J + D*) + ph - qj,

pei = EiJi' + ph - qi,i

Jump conditions across a material surface of discontinuity, such as the bounding
surface of a material body are,

.D! + Jll ni =0 across o

[ 41 =0 across-y
[xk] =0 across o

Srji + -ri I nj = 0 across 0

[(rij+.rj)vj- (J+D!) -qi ni =0 across a

[ nj >0 across a

21The convective time derivative D* is defined in (2.66)
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The system of equations is not closed without constitutive equations describing the
material response.

9I2 = U-er/

PoA2 = E2(e, J, ERS)

Then from our results obtained earlier,

1 : OT12I2 T ____SX 1*
- 0-- -@ , T= J- x sxROERSPo poe = j,~

Additionally we have,

' =J -XJQ'J(VJERSE,1,K)Ji = g-lXi, jfJ (Ej, ERs, E), E,K)

subject to the restriction

J'Ei - qiE-'E,i > 0.

Remark 2.25.1 (Perfect Electrically Insulating Bodies) The above system of
equations specializes to perfectly insulating bodies by constraining conduction current
density J" = 0 inside the body. The bounding surface of the body may have a non-zero
prescribed current density. We can append this modified system of equations with the
original EQS Maxwell equations if we introduce a surface charge density wF on the
discontinuity surface a,

s Dni dS = fV qF dV

Di,i = qF

[DiJni = wF  across a.

2.26 Equation Summary: Material Fields

Here we summarize the local equations and jump conditions for deformable electroe-
lastic continua with electric conduction, in terms of material fields.

S+ €,j = 0

Jp= po

(TJK i, + TJKX,, K), + Po (fi - i) = 0

[JTK]-0, 7JK=T'JK +TJK
poU= (TSR + 7S) tRS + 6J (,j + 51) + poh - Q,
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SP _ (Qj).

pe = Jjj + poh - QJ, J

Jump conditions across a material surface of discontinuity, such as the bounding
surface of a material body are,

bi[ + Jj' I g = 0 across o
[ 0 across

1Xk] =0 across o

ITJKXi, K + 7JKXi, K ] NJ = 0 across o,

S(TJKXjK + TJKXjK) Vi 0 q$ € + i)J) - QJI NJ = 0 across o

IQs I Nj >0 across o,

The system of equations is not closed without constitutive equations describing the
material response.

S -2 =-e , PU -627= ---2(eV Dj, ERS)

1 22 __T 0__2

-7 Po ' ' = "J E.----E "

Additionally, subject to the inequality constraint,

J, = YJ (vJ,ERs, e, E,K)

QJ = -J (J, ERS, , OK)
Jj'Es - QsO-lOj> o.

Remark 2.26.1 (Perfect Electrically Insulating Bodies) The general system of
equations specializes to perfectly insulating bodies by constraining conduction current
density Jj = 0 inside the body. The bounding surface of the body may have a non-zero
prescribed current density. We can append this modified system of equations with the
original EQS Maxwell equations if we introduce a surface charge density WF on the
discontinuity surface or,,

fD0 vNidS, = fvQPdV,

E)s, s= QF

[Vj]Nj = WF across ro.

Remark 2.26.2 (Rigid and Static Bodies) The general system of equations spe-
cializes to rigid and static bodies by constraining the strain tensor ERs = 0 and the
velocity vector vi = 0. We can append this modified system of equations with the
original EQS Maxwell equations if we introduce a surface charge density WF on the
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discontinuity surface a,,.

fJN dSo =f F

so.~do-~~ QdVo

vjj= QF

EVjJINJ= WF across o,,.
[jI NJ=W across o,,.
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Chapter 3

Small Deformation Approximations

3.1 Introduction

The purpose of this chapter is to introduce the small deformation approximation
(SDA) into the general EQS electroelastic equations summarized below. The resulting
SDA equations are greatly simplified and specialize to the classical linear piezoelectric
equations, extended to include electrical conduction. A result is that electric body
forces, realized mathematically as electric surface tractions, are retained in the small
deformation approximation.

3.2 Large Deformation Equations: Material Fields

Below we present a summary of the general EQS electroelastic equations with electric
conduction in material fields.

(151 + jj;)' = 0
Ei +±' = 0J

JP - Po

(-rJKXi, K + TJKXi, K), j + P, (fA - )=0

7TJJK]-=0, 7j'TJTKTJK r'

pU (TSR+ R)R + EJ(J + J) + poh - Qj,J

PA~ ! POj h- (0j),

0 0

p@i = Ej=JJ + poh - Qj, J

Jump conditions across material surfaces of discontinuity, such as the bounding sur-
face of a material body are,

i Dj+ J I Nj = 0 across ao

[q$J =0 across -0
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7 TJKX, K + T7Jxi, K ] NJ = 0 across o-,

I(TJKX,,K+ TJKXjK) V - O(J +i5.) - QjJNj = 0 across a,

[RJ I Nj > 0 across o,

The system of equations is not closed without constitutive equations describing the
material response.

2 = U - 07 , Po2 =2 (E), J, ERS)
1 2 2 Z2

Additionally, subject to the inequality constraint,

JJ = i (vJ, ERS, e, e,K)

QJ = J (Vj, ERS, e, G,K)

,J~J' - Qje-'e,j > 0.

Remark 3.2.1 (Material Time Derivative: Material Fields) Materialfields such
as Vj are defined over material points Xj in B,. The material time derivative of a
material field is simply a partial derivative with respect to time,1

ODi (Xi, t)
at

OV (Xj, t)
at

3.3 Small Deformation Equations: Material Fields
The material form of the large deformation equations summarized above are particu-
larly useful for deriving approximate theories. The difficulty with the above expression
is that Xj,K is part of the solution, and unknown a priori. We can greatly simplify
the above equations by introducing the small deformation approximation. First we
define the mechanical displacement vector.

Definition 3.3.1 (Mechanical Displacement) A mechanical displacement vector
UM is defined as

Xk - (XM -UM) bMk, (3.1)

Introducing UM into xj,K, EMN, and vk gives

Xj,K = 6 K + O-- 6 M.

1Compare to the spatial field description where a nonlinear convective term that arises
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EM =1 (OuM OuN O9UK 0UEMN = I all + aX---- +  aOXK all
2 (o9XN± a9X M m +X

Vk = UMJMk.

Definition 3.3.2 (Small Deformation Approximation (SDA)) The displacement
gradient and its material derivative are assumed small,

t9 Ug

<< 1 for each K,J = 1..3, (3.2)
Oig
IK < 1 for each K, J = 1..3. (3.3)

19xJ

Remark 3.3.3 (Simplifications Under SDA) The SDA implies the following ap-
proximations,

O9 UM .

Xj, K = JjK + aXMSMj F jK

J = det (Xj] i .

1 ( OUM OUN +aUK OUK
EMN -- 2 OXN OXM " XM OXNJ

1 (aUM_ OUN (3.4)

2 \XN+ XM /

It is interesting to note that xi, K ; : JiK and J ; 1 imply that all spatial and mate-
rial fields in definition 2.20.1 are indistinguishable in the SDA approximation. This
suggests the extreme nature of the simplification.

Theorem 3.3.4 (EQS Electroelastic SDA Equations) The EQS electroelastic equa-
tions under the SDA approximation simplify to the following:

(11+ =
i + ¢,j = 0

(TAK + 7'JiK),j + Pa (f, - ii,) = 0

7[JTK =0, 7]K= 7JK +TJK

p0 U= (SRTSBRs) +sEj(J'±jij)±poh QJj

PA~ ! P,- - )(Qj

po~ei = 6jJj + poh - Qj, J

- 1 alUM a9UN
EMN 2 \OXN + OXM)
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The corresponding jump conditions across material surfaces of discontinuity, such as
the bounding surface of a material body, are

[bj + JJ I j = 0 across o

11 =0 across %
[uM] =0 across oo

STJ K + JKJiK ]NJ = 0 across o

[(TJKJK +TfJ jK) V (JJ'+ 1J) - QJINJ=0 across oy,

[-- -i Nj 0 across o

The system of equations is not closed without constitutive equations describing the
material response.

T2=-o87, P412O 2= '(e,v,,ERS)
1 6''2 J Of 2  

_'_2

p 0 i~ji~r SR OERS

Additionally, subject to the inequality constraint,

J = Y(v RS,e, EK)

QJ= Ty (DJ, ERS, e, E),K)
Jj Sj - QiE- 19, > 0.

Remark 3.3.5 (Perfect Electrically Insulating Bodies) The general system of
equations specializes to perfectly insulating bodies by constraining conduction current
density TJ' = 0 inside the body. The bounding surface of the body may have a non-zero
prescribed current density. We can append this modified system of equations with the
original EQS Maxwell equations if we introduce a surface charge density W' on the
discontinuity surface ao,

i. VJN dSo = fV QF dVo

V)j,j = QF

i VJ Nj = WF across o. (3.5)

Remark 3.3.6 (Rigid and Static Bodies) The general system of equations spe-
cializes to rigid and static bodies by constraining the strain tensor ERS = 0 and the
velocity vector vi = 0. We can append this modified system of equations with the
original EQS Maxwell equations if we introduce a surface charge density WF on the
discontinuity surface ao,.

Vi 2)NidSo =fo OF dVo

Nd 0  V
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I= QF

[Di IjNj=WF across o
[7jJN= _1, WF across oro.
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Chapter 4

Finite Element Formulations

4.1 Introduction

The current and following chapters will consider solution of the EQS electroelastic
SDA equations presented in theorem 3.3.4. Restricting ourself to the simplified equa-
tions, it is convenient to introduce new notation.

4.2 Electroelastic SDA Equations

Definition 4.2.1 (Notation) The notation in theorem 3.3.4 is changed as follows:

UM -u VUS -+ Di
Q _qF WF _+ W F

€j -+ €i .6 -+ Ej
TJK-+T

Vi- Vi TT -T v

poU -+ U ERS -+j

h-4 h Qj -+ q

Nj s-+ n j V --+ V"

So-+ S Co-4 C

Next we present the SDA equations in the new notation.

Theorem 4.2.2 (EQS Electroelastic SDA Equations)

(bi + ,), :o
E + ,i = 0

8+ ),+
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TT E

(,Tji + rjj ±ik E= (J, + bk) + p h - ,k

PO '7 P Poe  -
poO = EkJk + poh - qk, k

1
i = - (u1,j + uj, i)

Jump conditions across a material surface of discontinuity, such as the bounding
surface of a material body are,

[JDi + JiJni = 0 across o,

[] =0 across 7o

[ui = 0 across o

[rjk + 'r ] ni = 0 across ao

[(rj k + r ) V k (Jjbj) -qn, =0 across o-,

[' nj 0 across oro

The system of equations is not closed without the constitutive equations describing the
material response.

AFf2 -- U 077 PoXFf2 -- T2 (e, Dj, I ij)

1 Of2 _412 T __ 2P= o '00 Ej = O , i =- 0%

Additionally, subject to the inequality constraint,

gJj = j (Dj i, e; , k~t)
qj = q7 (Dp, j, E), ek)

JjEj - qje-'e,j > 0.
Remark 4.2.3 (Perfect Electrically Insulating Bodies) The general system of
equations specializes to perfectly insulating bodies by constraining conduction current
density Ji = 0 inside the body. The bounding surface of the body may have a non-zero
prescribed current density. We can append this modified system of equations with the
original EQS Maxwell equations if we introduce a surface charge density wF on the
discontinuity surface ao,

s Dini dS = fV q F dV

Di, i = qF

[Dilni = wF across ao. (4.1)

Remark 4.2.4 (Rigid and Static Bodies) The general system of equations spe-
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cializes to rigid and static bodies by constraining the strain tensor Eij = 0 and the
velocity vector vi = 0. We can append this modified system of equations with the
original EQS Maxwell equations if we introduce a surface charge density wF on the
discontinuity surface ao.

i DinidS = fvqF dV

fJini dS = -a fy qF dV

Di, i = q F
= -qF

[Di ni = wF across ao.

[ Ji ]ni = _tbF across ao.

4.3 Weak Forms of Equations

In this section we obtain the weak form of the balance of momentum and Maxwell
EQS equations suitable for a finite element analysis.

Theorem 4.3.1 (Balance of Momentum: Weak Form) A material volume V bounded
by surface S = Sf + Su is subject to mechanical surface tractions fi on Sf, mechan-
ical displacement constraints uSu on S,, and body force density fi in V. The electric
stress tractions t- outside the material volume V are assumed negligible, consistent
with an assumption of zero electric fields Ei outside V. The balance of momentum
equations and corresponding jump conditions across S are

T 02Ui T+j~ - P Y "o &2 TUi] -

T =j,,n f f on Sf U,, =0- on Su.

Consider a weighting function i and tensor -ij, defined over the material volume V,
such that

- =0 onSu = (j + U,)

Then the balance of momentum equations and jump conditions have the equivalent
weak form,

T- dV dV = f 2U BidV + f i .SfdSf (4.2)

Ui = U - on S
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Proof. Multiply the balance of momentum equation through by Ui and integrate
over V,

T = Po-- Ti dV.

Use the chain rule to eliminate derivatives from r,

T-- T - -
= Jui + +

Use the identity v,( T-i V 7j
f('Tji) V,j frjuinj dS,

and il = 0 -Jz r, such that

T- T 1

7j3uij =ji(, + j ti) = T-

to obtain

frjiuinj dS - f rTEdV + (f -0 2  i =0

Use the jump condition and constraint
T

rj-nj = fi! fon S ui =0 on Su

to obtain a weak form of the linear momentum balance

f T dV + f po0 2i- dV fJift dV +f fii dS.

Theorem 4.3.2 (EQS Maxwell: Weak Form) A material volume V bounded by
surface -S = Sq + So is subject to electric current density Jext n = jSq on Sq
and electric voltage constraints OSO on So. The electric displacement fields D and
their time derivatives are assumed negligible outside the material volume V. The
conservation of charge equation and corresponding jump conditions across S are

V. (b + J) = 0 (1+J). n= J on S. 0 = OsO on So

Consider a weighting function € and vector E, defined over the material volume V,
such that

= on S= -Vq

Then the conservation of charge equation and jump conditions have the equivalent
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equivalent weak form,

V(b + J)-dV = - fJsq-dSq

€ = SO on So

Proof. Multiply the conservation of charge equation through by € and integrate
over V,

fv (b+J) dv =0

Use the chain rule to eliminate derivatives from (b + J)

v. [(b± ] =v. (b+i)7+(b± + ) V.

Use the identity

f V. [(+. ) ] d V [(+. J) n d,

to obtain

(b +J) .nds +f (b +J) d =0.

Use the jump condition and constraint,

(b±J) .n-=JS onSq q 0Oon SO

to obtain

fv (b + J) d - JSdSq.

4.4 Solution Technique

Standard techniques have been developed for the finite element solution of a system of
differential equations. These take as a starting point the weak form of the governing
equations, see BATHE [2] for finite element procedures in the context of continuum
mechanics of solids. Finite element procedures will be used to spatially discretize
the weak form equations, and finite difference techniques will be used to discretize
the equations over time. The result is a finite degree of freedom system of algebraic
equations. In this thesis we are interested in presenting a finite element formulation
suitable for nonlinear material response functions. In this case, the resulting system of
algebraic equations will also be nonlinear. Below we present our notation for solving
the nonlinear system of algebraic equations using Newton's method. We present this
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to motivate the form of our finite element formulation in the following sections, which
anticipate a Newton method solution.

Our finite element formulations1 will result in the following system of nonlinear
ordinary differential equations

Res0,

where t is our vector of nodal unknowns. Anticipating a finite difference discretization
in time, we write the equations at some specified time t + At,

Res(tt+,t, t+At, t+At) = 0.

This system will be discretized using an implicit finite difference technique,

4t+At = 4t+At(Ct+AtI G t 4)

4+t= 4tA(+~) t 04)

Dropping the explicit dependence on variables at time t, because they are known at
time t + At, we obtain

Res(C~+At, 4t+At(Ct+At)7 4 t±At(4 t+At)) =0.

Redefining such that

tt+At --

we introduce

Res' ' Res(tv)

where v is the iteration level for a Newton method solution technique. Consider our
equations at iteration level v + 1 and introduce a first order Taylor series expansion,

OResV Oe8 04 M 1 O 8
ResOe 6 8 + R etsv+ ...

= Resv+[O08 + O e-, + O O

or

ResV+ - Res' + J6

where we have implicitly defined the Jacobian matrix j. Newton's method is entirely

1See BATHE [21 for details of standard finite element procedures
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based on the following two statements

Res'+' _ Res' + J'J

ResY+l = 0

resulting in Newton's method equations that are solved iteratively

JVJ6 = -Res'.

until components of the residual vector Res' are sufficiently small.

4.4.1 Choice of Independent Variables

Boundary conditions and the functional dependence of available constitutive relations
are what determines the choice of independent variables in our problem formulation.
For convenience we introduce Voight notation to replace the symmetric tensors r?:
and cij with T and S,

T = rT -T7-3T rT rT rT]'

S = [ E11 C22 E33 
2E32 2 13 12 ]'

The jump conditions involve mechanical displacement u and voltage q specification
on the corresponding domain boundaries. Therefore, our finite element formulation
must have u and € for independent variables. In the conventional formulation we
would have available,

T = T(S,E) S = S(S,E).

From our definitions of strain and electric field,

S = s(u) E = E(O).

Therefore our constitutive relations and jump conditions are known in terms of the
same independent variables. In this case the weak form of the equations presented
earlier are suitable.

It turns out however that constitutive relations may not be avaialable in the
above form for a given material. Electroelastic materials with hysteresis may have
constitutive relations of the form

T = T(S,D) E = E(S,D),

where these nonlinear relations may not be easily inverted. In this case, our boundary
conditions require u, € as independent variables and our constitutive equations are
in terms of S(u), D.

Consider the weak formulations presented earlier. Prior to introducing our consti-
tutive relations, the weak forms have T, u, and D as independent variables. For
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closure of the equations we require constitutive relations, without them our sys-
tem of equations is underdetermined. We can introduce T = T(S, D), but not
E = E(S, D). To accomodate this second constitutive relation we introduce the
electric potential definition

E+V¢= 0.

This equation can be made suitable for finite element procedures by puting it in a
weak form. This is accomplished by multiplying the electric potential equation by D
and integrating over the volume VI,

fv(E+VO).DdV =0.

4.5 Finite Element Formulation

This section starts from the mixed weak form of the small deformation electroelastic
equations with electric conduction. A finite element formulation is presented that an-
ticipates a Newton method solution of the resulting nonlinear discretized equations.
The formulation can be implemented using four node, three dimensional, isopara-
metric finite elements presented in BATHE [2, pp. 375, 979-987] and a backward
Euler finite difference (implicit) time integration3 . Note that similar finite element
formulations for perfect electrically insulating materials are presented in appendix B.

4.5.1 Mixed Weak Form

fT-dV+PO/. idV-ffB.IidV - f SfsfdS O

f(-D + J). EdV + jSqO dS = 0

fv(E+ V¢).idV =0

4.5.2 Mixed Weak Form Rewritten

fS'TdV + f~ , iip~ dV _ f fBdV - f isf 'f SidS -(0)

(OD+ J) dV + f -S9 JSq dSq

fV'(E + VO) dV = 0

2This procedure is equivalent to a mixed variational equation derived by GHANDI [13]
3See BATHE [2, pp. 830-835]
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4.5.3 Test Functions Defined

u~i t) = H,(x2 )-t(t)
U1;Sf(xt) - Hu" (x j) t(t)

(it) = HOq

F((x, ))= BxjOt

iD(xi, t) = HD(xj)D(t)

4.5.4 Introducing Test Functions

U^'{JvBu'TdV +fvHu'PO -t2 dvufdv Hffs s}

I{f~ -B,( ±J)dV f ± HI4 J--, dSq }1 0

DIf HD'(EVo5)dV} =0

We require the weak form to hold for all -t(t), V;(t), D(t). A necessary condition is
that {}=0,[ 0 uttV [ fvBO'D,tdV +I fvDO

0v 1 '(E±+p) dV

-f[ HU~fB dV ] fsf Hsf ifsf dSf ]0 fq:?Sc~

or
.Fim+ Fic+FPik FEb FESf - FSq -0

4.5.5 Shape Functions Defined

u(x1 , t) = Hu(xi)fL(t)

S(u (xi, t)) = Bu(xi)fi(t)

O(xi, t) = HO(xj)4(t)

VO(qS(xi, t)) = BO(xj) (t)

D(x1 , t) = HD(xi)D(t)
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The shape functions have been chosen identical to the corresponding test functions

(Galerkin's method).

4.5.6 Introducing Constitutive and Shape Functions

T = T(S(4),D(4))

E = E(S(4), D( ))

J =J(E)

and using the chain rule

0' OT OS T OTD
4 S T4 +D + -

C B 0 0 ]+ [Cud][0 0 Hd]

J 0J 0Vk

O(E + Vr) OE OS OE OD OV¢
04 + 0+0 -54- 0

[Cdo B 0 O + ][0 0 Hd]+[O BO 0]

or

'T[CSuB. 0 Cud Hd]T

8J
4= [0 Cq.OB 0]

O(E + Vr) - [cdUBU B, c,,Hd]

4.5.7 Jacobian Matrices

OFI"'  pHu'Hu 0 0
= fg 0 0 0 dv

040 0 01

= fV poH'Hm dV =Jr

OF "- J 0 0 B'Hd] dV

40 0 0
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= vH 1 'H0 2 dV = J

O,k-f B,'C,,B. 0 Bu'C~dHd]
= , 0 BO'CqOBO 0 dVIVHd'Cd.B, Hd'B4 , Hd'CddHd

B0 0 0 Id [Bt, 0 01
=fvr0 B 0]'7uu O 0] 0 BO
= 0 0 HdJLdu I Cdd 0OBH dV

jk

4.5.8 Define Loading Interpolation Functio ns,

fB(Xt,t) = Hbf(X,)Bf(t)

f'f (xit) = Hf (xi)Sf (t)

JSq(xit) = qx)qt

4.5.9 Residual Vectors

F = IpoHmI'HmdV jm

FIC = f Hd /Hc 2 dV 4Jc4

Flk = ' dV

=~ JfH'HfdV =f if B d

FESf = f f f Sf f jH,,U fsf dSf

f H 8U'Hf dSf Sf=FE~f Sf
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F~sq fs. [Ho'] Jsq dSq f HO',JsqdSq

=fs HO~'HaqdSq Sq. FE8 qsq
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Chapter 5

Results

5.1 Introduction

In this chapter we present some classical examples of electric conduction in rigid
and static bodies to establish significance of the charge relaxation time constant
for linear materials. Analysis results are then presented under a typical loading
condition where electric conduction in a highly insulating electromechanical device
will eventually dominate the device response. Specifically, we present results for
electric voltage DC offset loading of an active fiber composite (AFC) device using a
nonlinear material model for repolarizable piezoelectric ceramic. DC offset loading is
common in applications to maximize the effective linear range of device operation.

5.2 Charge Relaxation and Time Scales

Example 5.2.1 (Rigid and Static Body) We consider a rigid eij = 0 and static
vi = 0 body. Then the governing equation is

(D9 + J,),, = 0. (5.1)

Assuming a steady state response exists, then at steady state,

dtd = 0 -+ J6, 0 (5.2)

the response of the body is completely dominated by electrical conduction.

Example 5.2.2 (Rigid and Static Body, Uniform and Linear Material) We con-
sider a rigid cij = 0 and static vi = 0 body. Then the governing differential equations
are

D,-- qF Ji, '  - + . (5.3)at
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Additionally, consider the body composed of a homogeneous and linear material,

J(xi,t) = oE (x,,t) o E P>0

D, (x,, t) = eEi (xi, t) c E P>0 . (5.4)

Differentiating these constitutive relations,

1 U
Ji, i = -Di, i -4 Ji,i = -Di,i (5.5)

Using (5.5) and (5.3) gives a first order differential equation for free charge density
qF (x,, t)

OqF (a) qrq
-F + = 0 (X,, o) = q (X,)

This differential equation has solution,

qF (X, t) =qF (x,) T r = - (5.6)
01

Therefore charge relaxes exponentially with time constant r = c/o.

sI E1 crl n 
x

s2 e2 cr2

Figure 5-1: Two layer body geometry: Example 5.2.3.

Example 5.2.3 (Rigid and Static Body, Piecewise Uniform and Linear Material)
We consider a rigid cij = 0 and static vi = 0 body. Then the governing differential
equations and jump conditions are

Di,i = qF Ei + O,i = 0

[Di n = wF [bi + Ji n, = 0 [o] = 0. (5.7)

Consider the electric voltage boundary conditions,

01 (si,t) = 0 02 (-S2, t) = V (t). (5.8)

The body geometry and loading conditions are consistent with a one dimensional
spatial fields approximation,

D,(x,,t) -+ D(x,t)
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E, (x,, t) -4 E (x, t)

(x, t) - (x,t) (5.9)

The body is composed of two layers of uniform and linear material, distinguished by
superscripts,

Dk (x, t) = EkEk (x, t) ek iER> 0
Jk (x, t) = okEk (x, t) 0 k ER>0  (5.10)

Consider the initial condition on free charge density qF (X, t) = 0. Then, from example
5.2.2 we see that qF (X, t) - 0 for all time t E R>0 . Then in each uniform region
k E {1, 2} we have

ODk (x, t)Ox 0. (5.11)

Therefore the fields Dk and Ek are spatially uniform

D k(x,t)--+ Dk (t) Ek (x,t) -+ Ek (t) jk (x,t) - jk (t)

Imposing the boundary conditions

01 (s, t) = 0 ¢2 (-82, t) - V (t) (5.12)

and integrating the electric field/potential equation through the thickness

0 80 (X~) 01 (X t0

L2 E~t) dx + /iE
1 (t) dx = - 12Ox- 8

-/8 Oox 2o O x
= -l(s,t) +0 2(-s 2, t) = V(t) (5.13)

gives

E'(t)' + E 2(t)s 2 = V(t). (5.14)

Using the jump condition across ao,

l + j = b2 + j 2 -__l EI + 'EI = E2 t 2 .. 0+2E 2  (5.15)

Using (5.14) in (5.15) yields the following differential equations for El and E2 ,

(f2S1 + 'S 2 ) El(t)-+ (+"28 + a182) El(t) = - V(t) ± -V(t)
S2 S2

(E281 + f' 82) E 2 (t) + (or2S1 + U"IS2) E 2 (t) = -V(t) + -V(t)
S1 81
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Defining the following constants,

C281 
+ E s

2  al = 2 0

0.281 + 0.182  82 (E281 + E182) 82 (f 2 S, + 618 2 )

=elp.- 0.1
OL 2 f p32 a

Si (f 2 81 + 1S 2 ) Si (f 2 S1 + 'E182)

we obtain

k'(t) + !El(t) = aIv(t) +/3 1V(t)

E 2(t) + 1E2(t) = a2Vr(t) + /32V(t).

Consider response to a step input V(t) = V. Then at time t = 0+ we have w' = 0.

Using the jump condition across 0.

[D, ni = 0 -+ XE1 (0+ ) = E2E 2(0+) (5.16)

and (5.14) gives initial conditions at t =0 + ,

El(0+) - 2 + 1E
2 (0+) f 2 (5.17)

The step response of the two layer body is

El(t) = 1 (I1 - tr) - '/ f 2f e-t,
0"281+--0.182 (i2-1 -[ 2V

0'2S1 U182 S1 + CIS 2

E2(t) - (0 1 - e - 1 ) + e- / (5.18)
+0.182 S-+ai2*) f 2 s 1 + E18 2

For t/ r small the electrical response is that of a perfectly insulating material. For t/r
large the electrical response is dominated by electrical conduction. Most importantly,
the electrical response of the body is not determined by the electrical conductivity
alone, but rather the geometry weighted ratio of electrical conductivities to permit-
tivities. It can be shown that the electrical time constant for the system is bounded
by the time constants for the individual materials, r 1 < r < r 2 1.

'Form the ratios 'r/r1 and r/r2
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Remark 5.2.4 (Time Constants of Engineering Materials) The effect of elec-
tric conduction on the electrical response for linear materials is determined not by
electrical conductivity alone, but the ratio of permittivity to conductivity. It is useful
to look at order of magnitude values for some common engineering materials 2

Table 5.1: Charge relaxation time constants.

Material a [ohm-m-' e/% r [sec]

Copper 5.7107 1.0 1.6 10-19

Seawater 4.0 100 80 1.8 10 -10
Water 4.0 10 - 6 80 1.8 10- 4

Epoxy, 23 ° C 2.6 10-13 4.4 150
Epoxy, 100'C 2.8 10 - 12 4.4 14
PZT-5H, 230 C 3.4 10- 12 3400 8850
PZT-5H, 1000C 8.2 10- 12 3400 3670
Corn oil 4.0 1011 2.7 .60
Glass 1.0 10 - 12 8.9 79
Teflon 1.0 10- 16 5.0 4.4 105
Quartz 1.010- 17  4.0 3.5 106

5.3 Example: Active Fiber Composite

This section presents an analysis of electric voltage DC offset loading of a highly elec-
trically insulating actuator/sensor device. The device is composed of a piezoelectric
ceramic fiber embedded in an epoxy matrix, an active fiber composite or AFC device3 .
The analysis considers a nonlinear material model for repolarizable piezoelectric ce-
ramic due to GHANDI [13] and described in the next section. Results demonstrate
significant cumulative effects of weak electric conduction currents.

5.3.1 Material Model: Polarizable Piezoelectric

The section describes a nonlinear material model for polarizable piezoelectric ceramics
developed by GHANDI [13]. Our first step is to derive constitutive equations with
appropriate independent variables from the energy balance and entropy equations.
This is accomplished using the balance of energy and entropy inequality equations to
form the Clausius-Duhem (C-D) inequality.

U =j + EA~bk+ EkJk + p~h - q~

2The material parameters are from HAUS & MELCHER [16, p. 222,251]. The values for epoxy
and PZT-5H were measured using a bridge circuit, see appendix C

3See BENT [4, 5], RODGERS [22], and BENT, RODGERS, & HAGOOD [6]
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Op,,? + qj,j - poh - qjE-'O,j 0 . (5.19)

We form the C-D inequality by eliminating qj,j - poh,

epo - &J +rjdij + Ekbk + EkJk - qjE- tE,j > 0. (5.20)

Introduce the Legendre transform G = U - Po, - r]ii, then

-& = -6 - Pe7 -poi - Zr fj - rTiij. (5.21)

The C-D inequality becomes

-G - N677 - +r ,i + EkDk + EkJk - q,9-1E,j _ 0. (5.22)

Introducing the isothermal approximation e (xi, t) = constant,

-G - i',Eij + Ekbk + Ekik >0 . (5.23)

Next we define G as

G = 6 r ,D;
80 . OG .r

- = - k- _'j,. (5.24)

Introducing into the C-D inequality,

(Ek - G d L) -5 06 O) 1rT + EkJk 0 O (5.25)

This expression will hold for all independent processes Dk (xj, t) and 7- (xk, t) if and
only if,

Ek = O fij =-G EkJk > 0. (5.26)

We write,

Ek =k (rj], Dk) cij = ijj(,rj],Dk) A = aEk a E IR>0 , (5.27)

where we have assumed for simplicity a linear and isotropic electrical conduction law
that clearly satisfies the required inequality. The material response functions are then
completely determined by the scalar function G = 6 (Dk, r.).

GHANDI introduces a memory vector 4 D? (Dk) that by definition does not evolve
thermodynamically, such that D* = 0. This vector is defined to evolve according to

4The vector D is not to be confused, in this small deformation context, with the convective time
derivative
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an evolution rule, but thermodynamically D* (Dk) is a constant. Then G is defined
by,

G Dk D! (Dk)) (5.28)

where it is indicated that thermodynamically, D* is held constant. Then we have,

Ek = k(-r4,?Dk, D(D))= -(GiD*

6i = ,ij (TjT, Dk, D'(DJ)) - a(L)

Jk = aEk a E IR>o, (5.29)

Symmetry of cij and 7-j' permit introduction of Voight notation,

(11) -1 (32) = (23) -4

(22)-+2 (31) = (13) -+5

(33)-+3 (12) = (21) -+6
Cii -+ Sk TT - Tk

where k E {1,.., 6}. Redefining Ek, Sk consistent with kk, ii we finally obtain

Ek = tk (Tk, Dk,OD*(Dj))
Sk = Sk (Tk, Dk, D*,(Dj)). (5.30)

At this point we will drop the component notation and adopt vector notation. Then,

E =.(T, D, D*(D))
S = E(T,D,D*(D))

- Sc (D,D*(D)) + S, (T,D,D*(D))

= Sa(D,D*(D)) +--(

J = aE a E R>o (5.31)

emphasizing the linear dependence of S,6 on T. Solving for T,

T ='(S, D, D*(D)) = (D, D*(D))] (S - ,- (D, D*(D))) (5.32)

The following matrices will be required in the finite element implementation,

=oT' 01d= T' q _ _ OJ
103 = -OV 

O
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Cd E Cdd = (5.33)
9S--ID C D

Remark 5.3.1 (Material Model: Jacobian Matrices)

Cud = -Cuu

Cu=at atU
cd. =OT ID

Cdd =a u

Cq = -o (5.34)

where,

oS I  _ o1 o+ OD*01~2' -+ -D ',D OD
OD IT O-D IT,D" D TDO

0 + (5.35)
O T, -OD* T,D aD

Proof. Calculation of Cuu, Cdu, and Cqs are immediate. Consider Cud,

aD S= S (D, D*(D)) + as (DS*()

0 0=j(D,D*(D))(+ ? I-(D, D*(D))) T
-*0--g

--4 O= ODT ' OT OD s

02' = OD (5.36)OT I-s = -Cu ' T '

proves the Cud relation. Next consider CdA,

aD _ a 02 DO

aD Is OTID -ODS ODT
aO d T ,  (5.37)

proves the Cd relation. U
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Definition 5.3.2 (Material Model: Memory Variable Evolution Rule)

k1

"rn = + D _  *

if Jj < A, then
t+AtD* D*

0(t+AtDi*)
ODj

if jj011 > Ac. then
t +AtD* = tD* + (1 - Acr

=j (1 - il- Ac + c2i2K all-3
ODj = 6i (1Aci ±AcAiAj

Definition 5.3.3 (Material Model: Response Function)

G = G .D ,D (D,))1"

27

S= >akGk(T,D,D*(D))
k=1

Ek = Ek (,rr,Dk, D*(Dj)) =-(i)

6j= ii (7,rDk, D*(Dj)) = (5.38)

The ak are real constants and the Gk are polynomial functions of the following set of
tensor invariants of the set 'rD, D } and for convenience we write ai = Di.

I, = aja,

12 = ajD
13 = D Di

J =Tjj ai

J2 rj~j (aiDj + ajDj)

Ko = rTrT

K1 = TT

K 2 = - T (a iD j + ajD)

J 3 = rT,D, D 3

K3 = -rTrkaia1
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The following coefficients produce stresses rT in [Pa] * 10' and electric displacements
Dk, D, in [C/m 2 ].

A=0.02
G, = 12 a, = -2.781*107

G2 =13 a2 = 1.410 * 107

G3 = 4313 a3 = 4.918 * 106

G4 = JOI1  a4 = 1.540 * 105
G 5 = JoI 2  a5 = -3.220 *105

G6 = JoI3  a6 = 1.824 * 105
G7 = JoI313  a7 = -3.299 * 103

G8 = J", a8 = -3.048*10 5

G9 = JtI2  a9 = 7.927* 105

Glo = J2 alo = 3.286 * 105
Gil = J3 all = -3.990 * 105

G12 = J312  a 12 = -2.221 * 106

G13 = J313  a13 = 1.477 * 106

G14 = JoJo a 14 = 9.135 * 100
G15 = JoJo1 al5 = 1.691 * 103

G16 = JoJoI2  a 16 = -3.088 * 103

G17 = JoJoI3  a17 = 1.349 * 103

G18 = JoJ1  a18 = -5.336 * 10 3

G19 = JoJ 2  a19 = 4.965 * 103

G20 = JoJ 3  a20 = -4.676 * 10 3

G 21 = KO a2 l = -3.157 * 101
G 22 = Ko1 a 22 = 1.235 * 103

G23 = K01 2  a 23 = -3.316 * 103

G2 4 = K013  a2 4 = 2.270 * 103

G 25 = K1  a 25 = -5.070 * 102

G 26 = K 2  a26 = 1.490 * 10 3

C 27 = K3  a 27 = -2.510 * 103

(5.39)

5.3.2 Analysis Results

In this section we present analysis results demonstrating the transient response of a
highly electrically insulating active fiber composite (AFC) device under an electric
voltage DC offset loading. Figures 5-4 - 5-10 demonstrate electrical charging response
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Figure 5-2: Active fiber composite: finite element mesh.

81.25 94
A A_____________k_____

J 66 Electrode

656.5

Figure 5-3: Active fiber composite dimensions, in [m] * 10- 6.

of the AFC device under an electric voltage DC offset loading. This loading condition
is used frequently in applications to maximize the linear range of operation. Consider
the following loading and boundary conditions.

Definition 5.3.4 (Loading and Boundary Conditions) The components ul, u2 , u3

correspond to mechanical displacement ui along the coordinate axes x, y, z, respec-
tively. Dimensions for x, y, z are specified in [m] * 10-6. Boundary conditions imposed
are ,

x-0 : ul=0

y=0 : u2 =0

z--O U3--0

z=656.5 : €=0

y=66, 0<z<94 : 0=+(t) { 1050[V1 0+<t<1200 [s]
0 [V] 1200 < t < 1500 [s]

All surfaces not specified have (t, + I) + 0 and (A + + = 0. No mechanical

5 These boundary conditions are not symmetry conditions for an AFC device. Symmetry condi-
tions were not enforced due to numerical difficulties.
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AFC Poling Cycle: Voltage Response

1200

1000

1600 /
400

k- dr~ve electrode
200 - B:e9.xy-cer Interface00 C: ibrymdpoint

,5ISM1000 1500
time [MeI

Figure 5-4: Voltage response through thickness.

body forces or inertial terms are included in the analysis. Isothermal conditions are
assumed. Electrical conduction values for epoxy and PZT-5H at 100'C from table 5.1
are used. See appendix D for epoxy material model.

These results demonstrate that electric and stress fields vary considerably over
time as a result of weak electric current flow within the material. The results demon-
strate a transition between capacitance dominated response during the initial seconds
of voltage loading, to an electric conduction dominated response. Over the order of
minutes the electric field levels change by a factor of four due to the cumulative effect
of weak electric current flow.

The figures demonstrate three interesting points. Weak electric current flow in the
highly insulating materials is not negligible, as made clear by the transient response
of the device'. After the electric field is unloaded to zero, non-zero mechanical dis-
placements, strains, and stresses remain. This is a result of the nonlinear polarization
model for the piezoelectric ceramic. Another important feature is the difference in
time scales between the initial loading and unloading of electric voltage. Inspection
of the figures indicate a charging transient of 1000 seconds for the initial voltage
loading. However, the charging transient for voltage unloading is 400 seconds. Dur-
ing the initial voltage loading, the piezoelectric ceramic is repoling, and the effective
permittivity is much large than during the voltage unloading. The result of a larger
permittivity is a longer effective (linear response) time constant for charge relax-
ation. This example has demonstrated that a highly electrically insulating body can
be dominated by electric conduction under slow time electrical loadings.

6A perfectly insulating device would maintain the response at time 0+ under a constant electric
voltage DC offset (not including mechanical inertia effects)
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-  AFC Poling Cycle: Displacement Response
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Figure 5-5: Axial end face displacement.

X 10 AFC Poling Cycle: Displacement Response
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Figure 5-6: Transverse centerline displacements.
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~x04  AFC Poling Cycle: Average Strain Response

2- xxx\fr

I transverse: through thickness (x-dr)I - transverse: n-Mlane (y-dr)I-2-
1-3-

-

-5-

-8-

0 500 1000 1500
VMS [sw]

Figure 5-7: Average axial and transverse strains.

0, AFC Poling Cycle: Strain Response (Fiber Centerline)
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Figure 5-8: Fiber centerline strains.
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xo AFC Poling Cycle: Electric Field Response (Fiber Centerline)
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Figure 5-9: Fiber centerline electric field response.

x106i AFC Poling Cycle: Fiber Stress Response
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Figure 5-10: Fiber centerline stress response.
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Chapter 6

Conclusions

This thesis has reported on the mathematical abstraction of deformable electrome-
chanical actuator and sensor devices composed of highly electrically insulating ma-
terials. The presentation included detailed proofs of the nonlinear large deformation
theory' of electroelastic continua with electric conduction.

Consistency was proven between the large deformation theory and the classical
Poynting vector based piezoelectric small deformation theory, extended for electric
conduction. A result was that electric body forces, realized mathematically as electric
surface tractions, are retained in the small deformation approximation.

A finite element formulation, suitable as an engineering analysis tool, was devel-
oped for deformable electromechanical actuator and sensor devices composed of highly
insulating materials with nonlinear response functions (e.g., repolarizable piezoelec-
tric ceramic material). The finite element formulation was demonstrated by analyzing
the loading response of a highly electrically insulating active fiber composite device.
Results demonstrated significant cumulative effects of a weak electric current flow
under electric voltage DC offset loading.
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Appendix A

Integral Theorems

Theorem A.0.5 (Green-Gauss) A field A defined over a material volume V in B
and bounded by surface S, satisfies the integral statement,

JVVAdV =AndS (A.1)

See ERINGEN [10, p. 427].

Theorem A.0.6 (Stokes) A field A defined over an open material surface S in B
and bounded by the line C, satisfies the integral statement,

fj(VxA).ndS =fA.dl (A.2)

See ERINGEN [10, p. 427].
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Appendix B

Finite Element Formulations

B.1 Weak Forms: No Electric Conduction

The equations and finite element formulations presented in this appendix are con-
sistent with notation presented in chapter 4. The equations presented are for small
deformation electroelastic continua with no electric conduction.

Theorem B.1.1 (EQS Maxwell w/o Electric Conduction: Weak Form I) A
material volume V bounded by surface S = Sq + So is subject to surface electric charge
density loading qSq on Sq and electric voltage constraints OS, on So. The electric dis-
placement fields D are assumed negligible outside the material volume V. The EQS
Maxwell equation and corresponding jump conditions across S are

V . D = qF D . n = -qSq on Sq €= OsO on S

Consider a weighting function and vector E, defined over the material volume V,
such that

0= oonS E = -Ve

Then the EQS Maxwell equation and jump conditions have the equivalent weak form,

fV D-dV = f q F dV + fqq dSq

Proof. Multiply the EQS Maxwell equation through by q and integrate over V,

fDdV Jq F dV.V V.

Use the chain rule to eliminate derivatives from V. D,

v. (Di) =V. nD + D.V
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Use the identity

Jv.(~) V =(D0).n dS

to obtain

fD4 .ndS~f D.EdV =fqFd

Use the jump condition and constraint,

D. n =._qSg on Sq =0 on So

to obtain

fV D.EdV =f q F dV +fqsgdSq

For convenience we repeat the weak form theorem for balance of momentum from
chapter 4.

Theorem B.1.2 (Balance of Momentum: Weak Form) A material volume V
bounded by surface S = Sf + Su is subject to mechanical surface tractions fif on
Sf, mechanical displacement constraints uS on Su, and body force density fB in V.
The electric stress tractions t? outside the material volume V are assumed negligible,
consistent with an assumption of zero electric fields Ei outside V. The balance of
momentum equations and corresponding jump conditions across S are

O2ui T"rr.. .+ f !3 = po 92 i - = o
S', Ot 2  i

=f on Sf ui = u on Su.

Consider a weighting function Ui and tensor €j, defined over the material volume V,
such that

Ui = o on S j N, i + , .

Then the balance of momentum equations and jump conditions have the weak form,

f T= JfiftidV +ff'fU ~

ui = t S on Su
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B.2 Finite Element Formulation I

This section presents a finite element formulation of perfectly electrically insulating
electroelastic materials under the small deformation approximation. The formulation
is suitable for nonlinear material response functions and anticipates a Newton method
solution technique. The formulation is suitable for constitutive equations with strain
S and electric field E as independent variables.

B.2.1 Weak Form

v fjd ± p,, 2u:i dV =f fiBidV +±f fjSf usfdf" Dj 0d B

J~Di~t V qB dV +±fqsqCkdSq

Noting the symmetric of T and i, we introduce Voight notation

T = [T, 7T2~ T3 T2 -r13 rT

s = [Ell C22 633 2632 2C13 2 6123

we obtain

fT.SdV+f PO 'dV = JvfBUdV±+Lffsf Usf dSf
D-EdV = fqB /jdV +fqsqVdSq

B.2.2 Weak Form Rewritten

fJS'T dV +± :a Ipo-dV =fU B dV + f f'fSf fiv t2  iV ffdf

f-'D dV = f -;qBdv +f qs dSq

B.2.3 Test Functions Defined

U(xi, t) = H(x 1)-i(t)

Usf (xi, t) ,= H (xi)-(t)

-S(U(xi, t)) = Bu(x )u(t)

-¢(x,t) = HO(x)w(t)

Xi, t ) = HS (xj)- (t)

"(-(x, t)) = BO(xi)0(t)
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B.2.4 Shape Functions Defined

u(xi,t) = Hu(xi)fi(t)

us'(xi,t) = Hff1(xj)fi(t)

S(ii(xi, t)) = Bu(xi)i(t)

¢(xi, t) = H(x,)4(t)
Os,(xi, t) = Hs(x,)fp(t)

E(((x,,t)) = B(xj)ep(t)

where we have chosen the shape functions identical to corresponding test functions
(Galerkin's method).

B.2.5 Introducing Test Functions

. I{~u'd 092U -V f H1' dV f Hf'fSfdSf}=O
IfB'V+ f Hu'PO jj2d V fSd

I'f B,'DdV - f HIq B dV - f H14qI qsq dSq=0

We require the weak form to hold for all fi(t), b(t). A necessary condition is { } = 0.
We obtain

fv PH Ia2udV 1 fB'TdV 1 vu dV
0 + IvBO'D dV fv H q BdV +

fsf HuffdSf ] - [ = o

or

FIm + FI- FEb- FEs] - FE s = 0

B.2.6 Newton's Method at Time t

Res' Res(tv)

For simplicity we assume fB, fsf, qB, qSf are independent of fi(t), (t).

Res(4,4) A Fire + FIk - FEb - FEsI - FESq (B.1)
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sORes J+ ORes +. -Res'+ _ Res"± +±---- , "'.I, "

Resv+l - 0

We obtain the equations for Newton's method

ORes g + es = -Res' (B2)

where we will introduce a temporal approximation such that

6J= f (C")±+F(j')J

This linear system must be solved iteratively, starting from an initial guess, until
some norm measure of error is achieved.

B.2.7 Introducing Constitutive and Shape Function

D = D(S( ), E( ))

In anticipation of calculating Jacobian matrices for Newton's method we use the chain
rule to define the following matrices.

OT OT OS OTOE

S OS S0 9E SO

similarly

OD OD OS 9D 9EW-- - 9 -o9 E S

=[cO,][B, o]±[COO][0 -BO]

or
OT

S= [ ~CB -COBO ]

OD - [ C B. -COBO ]

B.2.8 Jacobian Matrices

Ul m  [fvpoH,'Hu dV 0]

S4 0 01
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= f poHm,,'HmdV

OFIk =[fv B,'C..B. dV -fv B,'CqBo dV1

0 1Lfv B4,1C41.BdV - fv B , COOBOdVJ

A, 0 ]' [ Cuu -Cu' Bu 0 ]dV
f= fB'CB dV
jk

B.2.9 Define Loading Interpolation Functions

f B(X, t) I= Hbfq(xi)Bfq(t)

f'f (xt) = Hf (xi)Sf (t)
qSq = Haq(Xi)Sq(t)

B.2.10 Residual Vectors

Fltm = f poHm 'Hm dV~

FIk = JBf[LT] dV

FEb = [ Hu' 0 dB
Jv [0 HO,  qB~d

f HI fB] dV

=fv H'Hbfq dV Bfq
=FEbfqBfq

FEs' = f sH ' f ffdSf

f jHu'Hf dSf Sf
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= FEf Sf

FEq . ,S dSq

= 'Sq jqs dSq

= j H 'Hq dSq Sq

= FEsqSq

B.3 Finite Element Formulation II

This section presents a finite element formulation of perfectly electrically insulating
electroelastic materials under the small deformation approximation. The formulation
is suitable for nonlinear material response functions and anticipates a Newton method
solution technique. The formulation is suitable for constitutive equations with strain
S and electric displacement D as independent variables.

B.3.1 Mixed Weak Form

JT.SdV 2f .dv -fBdV -dSf =0

fV D-dV - f q B dV -fSqq dSq =0

fV(E+ VO).-DdV =0

B.3.2 Mixed Weak Form Rewritten

92'TdV +f U poUdV - f ':fB dV - f U,'f sf = (0)

F'D dV - f tq B dv - f 'qsq dS7= 0

V V (E + VO) dV = 0

B.3.3 Test Functions Defined

-V(xi,t) = Hu(xi)u(t)

Usif(xi,t) = Huf(xj)(t)

-9(V(x,,t)) = u(x) (t)
-¢(Xj, t) = HO (x,)-O(t)
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0 (X,,t) =H '(x,)O(t)
-E( (x,, )) =-SO(x,)O(t)

D(x,,t) = HD(xi)D(t)

B.3.4 Shape Functions Defined

u(x,,t) = Hu(x,) (t)

S(u(x,t)) = Bu(x,)i(t)
¢(x,t) = HO(x,) (t)

V¢(¢(x,,t)) = B(x,) (t)
D(x,t) = HD(x,)b(t)

where we have chosen the shape functions identical to corresponding test functions
(Galerkin's method).

B.3.5 Introducing Test Functions

V {fBu.T + H Hf' f dV - f Hus sf ds} 0

V;{ f BO'DdV - f HIq B dV -f HI4slIqs9 dSq}=0

I{JH'(E + V)dV} 0

We require the weak form to hold for all t(t), 4(t), D(t). A necessary condition

0  V fv BO'D dV 1 fv -H'qB dV 1
0 fv HD'(E + Ve)dV 0

fsf Husf If sf dSf 00B-dfsi-H qSqdSq -0O

0 0

or
FIm + FP k - FE' - FE s f - FE s q = 0

B.3.6 Introducing Constitutive and Shape Functions

T = T(S( ),D( ))
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E = (() ()

and using the chain rule

9T OT OS OT OD

-[C--][B, 0 + ol[CudI[o 0 Hd}

OD_
S= [o0 0 Hd}

O(E±+VO) 8E E8S O9EOD aVq5
O-%+ D- +±

[Cd.][ B. 0 0]±[Cdd][10 0 Hdl+[0 B, 0]

or 82' [ B- 0 C~dHd]

OD_

[o 0 Hd]

O(E+ ~b)- CdUBU BO CdIdHd3

B.3.7 Jacobian Matrices

O9FI m  [fv PH.'H. dV 0 0]
0 0
0 0 I0

=fP.HmHmdV =jm

a9FI' fv Bu'CuuBu dV 0 fV Bu'Cud HddV1S0 0 fv BO 'HddV
fv Hd'CduB. dV fv Hd'BO dV fv Hd'1CddHd dVJ

Bu 0 0 CUU 0 Cud Bu 0 0
=if[g BOd L0 d 0 0 d][0 BO 0]1 dV

0 0 d Cd I Cd 00 Hd
= vB'CB dV

= jk
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B.3.8 Define Loading Interpolation Functions

fSI(Xi,t) = Hoq(Xi)Sf(t)

qSq(xit) = Haq(xi)Sq(t)

B.3.9 Residual Vectors

Flt M  fpH 1H V4

F.1' f= dV

Fb dV1 f

fv H'Hbfq dV Bfq = FEbfqBfq

FE5 ' f~ j [ f sf dSf 1  jHu 'f sdSf

f= H 1U~'Hf1 dSf S1 = FEf Sf

~~S = [is~i] qe dq s H5 O'qsq dSq

j~q HO'Hq dSq Sq =FEaqSq
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Appendix C

Electric Conduction Measurements

Electric conduction values were measured by tuning a potentiometer to zero the
voltage V. The measurement is a zero load measurement.

S.4 AM PL5E

Figure C-i: Electric conduction measurement circuit.
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Appendix D

Epoxy Material Model

Here we present a material model for epoxy,

= fi (Eij, Di),

Ji = ,]i (eiq, Dj).

Symmetry of eij and rjT permit introduction of Voight notation,

T = [rl 22 rT T jT -rT]'

s = Ell 622 E33 2E32 2613 
2 612

J= I J2 J

The linear material model for epoxy in terms of Voight notation is,

T - CUS-+-CdD,

E = Cd,,S + CddD,

J = -CqOE.

The following coefficients are for stress T in [Pa], electric field Ej in [V/m], and
electric displacement Di in tC/m 2],

C..(1, 1) = C,,(2, 2) = C,,(3, 3) = 7.708 * 1010

C,,(4, 4) = C,,(5, 5) = C,(6, 6) = 4.222 * 1010

C.,(1, 2) = Cu(1, 3) = C..(2, 3) = 2.609 * 1010

C,. (i,j) = C, (j, i)
C,,,(i, j) = 0 otherwise

Cd(m, n) = Cd,,(n, m) = 0
Cdd(1, 1) = Cdd( 2 ,2) = Cdd(3,3) = 2.567 1010
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Cdd,(r, s) = 0 otherwise

CqqO(1, 1) = Cqo(2, 2) = Cqo(3, 3)=
CqO(r, s) = 0 otherwise.

See table 5.1 for values of o,.
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Appendix E

Classical Small Deformation
Derivation

E.1 Introduction

This appendix presents the classical small deformation piezoelectric equations, ex-
tended to include electric conduction and electric body forces. They are based on
postulating a conservation of energy statement using Poynting's vector as presented
in TIERSTEN [29, pp. 25-39]. We modify the classical equations by including electri-
cal body forces in their surface traction form. This formulation starts from notions
of small deformation 'built in'. The main assumption is that Poynting's vector rep-
resents the electric energy flux through a surface.

E.1.1 Conservation of energy

After postulating the conservation of energy statement we enforce invariance require-
ments after GREEN & RIVLIN [14] to obtain linear and angular momentum equations.
We could have used momentum and angular momentum equations following TIER-
STEN [29] instead of the invariance arguments. The balance of energy equation is
postulated in the form ,

f ~vv--)d f JfividV +ftivi dS +Jfph dV - j qini dS +
t f v iv + U) dV fv v id

i dS d(E x H) d-nqndS.

Noting that surface tractions survive a limit process as volume approaches zero and
surface remains finite, where a body force like gravity does not, we have exploited
this property of electric 'body forces' and written them as electric surface tractions.
Note the traction vectors ti, t-7 are related to their respective stress tensors by

ti =Tjinj

'See definition 2.5.1 for field definitions
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E - E

ji jnj

Also, we utilize the EQS approximation to the Poynting vector

(E x H) = ¢(Ji + A )
Noting the following

fr-jivinj dS = f(rivi),j dV

fs Ir',vinj dS = fV (Fiivi),j dV

isqnh dS = f q, idV

we obtain

f pj + dV f fivi dV +f (,vdV+fphVJq,idV

+ f (,v),j dv - f[¢,+ ,],y

Expanding the divergence terms and noting from EQS Maxwell

(Ji + bi),, = 0
Ej = -€,i

and by noting this holds for arbitrary volume V we obtain the local for of our energy
statement

+E(J + bi)

We obtain the governing equations of motion by enforcing invariance of our energy
expression w.r.t. rigid motion of the body. We first consider a rigid dispacement
where bi is an arbitrary vector

vi -+ vi + b,

We assume during the rigid dispacement that all terms U, p, fi, 'rji, irfl, ph, qj, 0, Ji, Di
remain constant

v:(,j,, + rji+ fi,- , ) (vi+ bi)+ (,j, + -T¢) vj + ph,-,,,~
+E(Jj + bi)
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Using our energy statement we obtain

Requiring this to hold for arbitrary bi, we obtain our equations of linear momentum

(77ji+i-flj+ ±fi - pi = 0

Using our linear momentum equations in our energy statement it simplifies consider-
ably to

( r = (Tji + vi) Vj + ph - qj,j + Ej(Jj + 15j)

Next we superpose an arbitrary rigid body rotation where Qk is arbitrary vector

Vi -- Vi + 6ijkejf'kVi,j -4 Vi j + Cijk'k

we obtain

&=(Trji + 7ji) (Vi,1 ± +EijISQk)Ph qj,ji + Ej (Ji + Ji)

Simplifying using our energy expression

(ri + i7)Cijkfk= 0

we require this to hold for arbitrary £Qk. This requires the anti-symmetric part of
(,rji + rjj) = O,or introducing the symmetric and anti-symmetic operators

1
A(,j) -=(Aij + Aij)

1
A[ij] = (Aij - Aj),

we rewrite this condition as

(r+ ),1= 0

Rewriting vi, j as the sum of its symmetric and anti-symmetric parts

Vi,j = U(i,j) + iU[i,j]

= iij + ji

and noting that contraction of a symmetric and anti-symmetric tensor is zero we
obtain

(,rji +r ji, = (-rji + rfj)(ij + COij)
-E •

(r +
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Finally our energy expression simplifies to

U=(,rji + !T) ij + ph - q1j + Ej (Ji + bi)
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Abstract

Standard assumptions about the efficiency of active systems working against a load neglect the
load coupling inherent in these systems. This thesis contains a derivation for finding the actuation
efficiency and work output in electro-mechanically coupled systems working against a load. This
general derivation is for fully coupled, non-linear systems working against a generalized load. Three
example cases are then shown to demonstrate several key aspects of the general derivation. The
first example case is a one-dimensional, linear discrete actuator working against a one-dimensional,
linear spring load. This example shows the effects of electro-mechanical coupling on the actuation
efficiency. The second example case is of a piezoelectric bender first presented by Lesieutre and
Davis[l] in their derivation of the device coupling coefficient. The bender example demonstrates
the differences between the device coupling coefficient and actuation efficiency as well as the use
of the generalized derivation in mechanically complex problems. The final example presented is
a one-dimensional, linear discrete actuator working against a one-dimensional, non-linear load in
order to demonstrate the possibility of increasing the work output of a system through the use of
non-linear loading functions.

To test the theoretical derivation presented, a custom built testing facility was designed and
built to measure the work output and actuation efficiency of a discrete actuator working against
both linear and non-linear loads. The testing facility was designed for load application with pro-
grammable impedances and closed loop testing at frequencies up to 1 kHz. The complete design of
the testing facility is presented with an overview of the rationale behind the design decisions made.

Finally, tests were performed on a discrete actuator working against linear and non-linear load-
ing functions. The tests performed on a discrete actuator working against a linear load match the
expected work output predicted by the theory. Tests performed on a discrete actuator working
against a non-linear load validate that increases in the mechanical work out of the actuator are
possibleby using non-linear loads instead of linear loads. To illustrate that this is a practical re-
sult, the design of a loading device that loads a material non-linearly while loading a spring linearly
is presented with its theoretical performance. Recommendations on ways to improve the model,
testing methodology, and testing machine concludes the document.

Thesis Supervisor: Nesbitt W. Hagood, IV
Title: Associate Professor
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Nomenclature

a Stiffness ratio, load stiffness divided by material stiffness
A/Acr Cross-sectional area of the material
Ap Cross-sectional area of piezoelectric material
A, Cross-sectional area of structure
/3 Angle of the springs

Initial angle of the springs
b Base length
Cs Capacitance of the system under constant strain
CT Capacitance of material under constant stress

3 Young's modulus of the active material in the "three-three" direction under constant
Electric field

Caxial Axial compliance of plates and rods
CbE Young's Modulus of the base material at constant Electric Field
Cbend Bending compliance of plates
cEp Young's Modulus of the piezoelectric material at constant Electric Field
cS Young's modulus of the spring
6 Variation of the parameter
9 Partial derivative of the parameter
D3 Electric Displacement in the active material in the "three" direction
d Separation distance of pivots
d33 Electro-mechanical coupling term of the active material in the "three-three" direction
eo Dielectric constant of free space

33 Dielectric constant of the active material in the "three-three" direction under
constant strain

-T3 Dielectric constant of the active material in the "three-three" direction under

constant stress
E Young's modulus of the material
E3 Electric Field in the active material in the "three" direction
Ef Actuation Efficiency
Efa Apparent actuation efficiency
Efp Proper actuation efficiency
e13 Electro-mechanical coupling of the active material in the "one-three" direction
e33 Electro-mechanical coupling of the active material in the "three-three" direction
F Generalized force vector of the active material
Fbi Blocked force of the actuator
F1  Generalized Force vector of the load
Flin,,r Linear force relation

15



F.1 Force relation of non-linear 1 function
Fn2  Force relation of non-linear 2 function
Fnon-iineri Force relation of non-linear 1 function
Fnon-inr2 Force relation of non-linear 2 function
F, Force in the spring
fa Anti-resonant frequency of the stack
fr Resonant frequency of the stack
G(s) Transfer function of controller
h Height of the plate
hb Height of the base material
hp Height of the piezoelectric material
I Current in system
K Stiffness matrix of the system
K -Stiffness of the beam in bending
K 33  Stiffness of piezoelectric material
Ka Stiffness reduction of the beam due to axial preload
Kt Total stiffness of the beam
k1  Stiffness of side springs
k2 Stiffness of load spring
k33 Material coupling coefficient in the extensional mode
ka Apparent device coupling coefficient
kalign Stiffness of the alignment mechanism
kaxiat Axial stiffness of rods
k E  Stiffness of the piezoelectric material under constant Electric field
kl Generalized load stiffness
km Matrix coupling term in beam analysis
kmeas Stiffness measured during testing
kp Proper device coupling coefficient
k, Stiffness of load or load spring
k, (x) Stiffness of non-linear load or load spring
L Length of the beam
I Length of a rod-shaped material
lp Length of piezoelectric material
1 Length of structure or spring
M Mass matrix of the system
71mech Stiffness ratio relation describing the work output of a system working

against a load
N Number of layers in piezoelectric stack
P Axial load applied to the beam
p Electro-mechanical coupling of the system
Q Charge vector
q(t) Height of the center of the beani as a function of time
S 3  Strain in the active material "three" direction
s Laplace variable
s3 Elastic constant of the active material in the "three-three" direction under

constant Electric Field
T3 Stress in the active material"three" direction
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t Time
t1  Thickness of the stack layers
tP Thickness of the plate
u(k) Control output at update k
V Vector of applied electric potentials
VappI Voltage applied to stack during testing
Vi Initial system voltage
Vf Final system voltage
Vma Maximum voltage applied during test
Vol Volume of the piezoelectric material
w Frequency of pole or zero
WE Electrical Work
Wi. Work into the system
Widea _in Work into an ideal capacitor
Wi-E Electrical work into the system
WinM Mechanical work into the system
WM Mechanical Work
Wo.t Work out of the system
w Width of the plate
x Generalized displacement vector
x I  Generalized load displacement
x Displacement of system
Xfree Free displacement of the actuator
xi Initial displacement of the system
xs Displacement of spring
Xt Final displacement of the system
OE Electrical mode shape
OM Mechanical mode shape
y Dimension perpendicular to the beam
y(k) Measurement at time k

Damping ratio
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Chapter 1

Introduction

1.1 Motivation

The properties that active materials exhibit were discovered in the 1950's and linear models of the

material behavior were proposed and validated. However, because of technological limitations, these

models were defining the stable low power regions of the material. As power generation capabilities

have advanced allowing active materials to be used with higher input voltages and currents, the

applications for active materials have been expanded and the demands on the materials increased.

In recent years, new applications of active materials have demanded that the maximum possible

performance is achieved.

To increase the performance of active materials, several avenues have traditionally been ex-

plored. Generally advances have been in three classes; either perfecting the modeling of all kinds

of active materials in order to accurately predict their performance, especially at the limits; to

experiment with different compositions of active materials to maximize the desired characteristics

for a certain application; or to use basic active materials in different configurations, for example

composites or as single crystals, in order to reduce performance losses found in traditional ceramic

wafers. Although these traditional methods of increasing performance focus on the material itself,

it is reasonable to assume that another method of increasing performance is to focus on modifying

what the active material is being asked to do.
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1.2 Objective

The purpose of this thesis is to closely examine the work output and actuation efficiency in the

framework of a fully non-linear coupled system. The efficiency expression will be compared to

the traditional system comparison methods of the material coupling coefficient[2], device coupling

coefficient[l], and impedance matched system efficiency[3, 4]. It is hoped that by examining the

work throughput of coupled systems, a better understanding of the effect of coupling terms on an

actuation system is achieved.

An additional objective of this project is to explore if the performance metrics of an active

material system can be increased by modifying the load that the active material is working against

from a linear to a non-linear function. The performance metrics under consideration are the work

output and actuation efficiency of the system. The work output is the amount of work going out of

the system and into a load at any given time. The actuation efficiency is the work output, typically

mechanical work, compared to the work input, typically electrical work.

1.3 Background and Previous Work

Active materials are materials that can predictably deform when an external field is applied, gen-

erally a magnetic, electric or thermal field. Special kinds of active materials also have the converse

property that they can produce fields when externally deformed. The common classifications of

active materials are piezoelectric materials, electrostrictor materials, magnetostrictor materials,

and shape memory materials. Each kind of active material has its own unique composition and

behavior. This work will be working with piezoelectric materials which have a known mechanical

and electrical interaction for their low-power, linear region of behavior. The higher power region

becomes non-linear in nature, but this region will not be explicitly considered.

In this thesis, the general system being examined is a base system with coupled mechanical

and electrical properties, an electrical work source as input and a mechanical work sink as the

output of the system. This general system, shown in fig. 1-1, describes how active materials work

in standard operation. The electrical work source is a generalized work source with a generalized

charge input and generalized voltage output. The mechanical work sink is a generalized work sink

with a generalized displacement output and generalized force input. As is described in Chapter 2,

the derivation performed is for a very general system with no constraints on the linearity of the
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Figure 1-1: Schematic of general system representation. The electro-mechanical coupling block
can be a variety of distributed and discrete systems with linear and non-linear relations. The load
element is a generalized work pair with either a linear or non-linear relations.

coupling terms of the core system or the interaction of the external work pairs.

When discussing the performance of active materials and active material systems, traditionally

just the coupling within the electro-mechanical system has been discussed. These discussions have

ranged from the standard material coupling coefficient, an effective coupling factor found when

changing the cycle used to find the coupling coefficient, a device coupling coefficient, and an energy

transfer metric defined when looking at discrete systems. These metrics will be fully described in

the following paragraphs to provide a basis for comparison of the actuation efficiency derived later

in the thesis.

1.3.1 Material Coupling Coefficient

One fundamental property of piezoelectric materials is the material coupling coefficient. The IEEE

standard on piezoelectricity defines the coupling coefficient as "...non-dimensional coefficients which

are useful for the description of a particular piezoelectric material under a particular stress and

electric field configuration for conversion of stored energy to mechanical or electrical work" [5]. The

coupling coefficient has long been looked on as a measure of the efficiency that a material converts

mechanical energy to electrical energy and vice versa. This view has also extended itself to materials
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working in a device where the square of the material coupling coefficient represents a value that

can be scaled by the load that the material is working against to find the actuation efficiency of

the system when working against a load.

The material coupling coefficient for different modes of operation is a standard measure of the

worth of a piezoelectric material. The coupling coefficient derivation for piezoelectric materials

is presented in the IEEE Standard on Piezoelectricity and is a well known and well documented

derivation. However, the derivation is presented here for a background to talk about the other

performance metrics.

Derivation of the Material Coupling Coefficient

The coupling coefficient is a unit-less quantity that is defined as the square root of the amount

of work produced by an active material divided by the amount of work supplied to the active

material under specified loading conditions. In the following paragraphs the derivation method of

the material coupling coefficient will be illustrated.

The material coupling coefficient is found by specifying a standardized loading cycle and keeping

track of the work put into the system and the work harvested from the system. The coupling

coefficient then becomes a measure of how effectively a material can convert energy between its

mechanical and electrical states. The coupling coefficient is found by specifying a cycle with either

electrical work-in and mechanical work-out, or the reverse cycle of mechanical work-in and electrical

work-out. Regardless of the version of the cycle used, for a given directional mode of operation the

coupling coefficient is the same. For example, the coupling coefficient in the "one-one" mode is the

same regardless of whether mechanical energy was applied or electrical energy was applied, but it

is not the same as the coupling coefficient in the "one-three" mode of operation.

To understand where the value of the coupling coefficient comes from, it is necessary to derive

the coupling coefficient from the governing equation of the material. The standard work cycle is

applied and the equations that express each condition derived. The work cycle is applied with both

the mechanical work-in cycle and the electrical work-in cycle so that it is shown that they are the

same. The operational mode of the coupling coefficient derived is the "three-three" mode, where

the electric field is applied in the three direction and the strain of the system is measured in the

three direction. The method of derivation of the coupling coefficient stays the same regardless of

the direction applied.
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Figure 1-2: The loading cycle for the derivation of the material coupling coefficient. This cycle is
for the case with Electrical work in and Mechanical work out

To begin the derivation, it is first necessary to state the governing equation in a one-dimensional

form. Since stress, T, and electric field, E, are the desired free variables, the governing equation is

shown below.

D3 d33 T} E3

The loading cycles used in the coupling coefficient derivation are found in figures 1-2 and 1-3.

The cycle in figure 1-2 is a representation of the coupling coefficient cycle with electrical work-in

and mechanical work-out. One graph is how the figure appears from a electrical point of view,

the other is how it appears from a mechanical point of view. The cycle begins at point A where

all states of the system are zero, the initial condition. Then an electric field is applied across the

material under free-stress conditions until point B. From point B to C, the material is clamped so

the displacement stays the same as the electric field is removed. Then the material is mechanically

unloaded until the material returns to its initial state at point D.

Mathematically, the cycle can be expressed in terms of the governing equation, eqn. (1.1). From
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point A to B, the material is loaded in "free-stress" conditions and the work in is electrical work

expressed as
Vf -D3max

Win = E 36D 3*dVol (1.2)

Since the variation of T is zero, the variation of D becomes

6D3 - ET336E 3  (1.3)

and then the work in becomes
Wi ET p2

Win 2 333a X Vol (1.4)

From point B to C, the material is clamped and then electrically unloaded. Clamping the

structure makes the change in S equal to zero. Therefore

E T

0 d 33 E 3 + s3T 3  (1.5)
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Rearranging this for an expression for T in terms of E

33 E3(1.6)
833

Then the mechanical work comes from mechanically unloading the system from point C to D

while the electric field stays constant.

fT3final

Wo = Jvo' T36S . Vol (1.7)

Since the variation in electric field is zero, the variation of strain becomes

6s 3 = sE6T (1.8)

Substituting equation 1.8 into equation 1.7 and integrating with respect to T results in

Wot- 8 2  x Vol (1.9)
WOt 2 33 3initiaI Vl 19

However, from equation 1.6 we know that the initial stress for this part of the cycle is based on the

maximum stress seen from the maximum electric field. Therefore the substitution of electric field

for stress can be used, resulting in

1 d2(1

Wt = 3max Vol (1.10)
'33

To find the coupling coefficient, the work out of the system is divided by the work into the

system. Therefore, dividing equation 1.10 by equation 1.4, results in

2 WO. t 1 T 1t72 XVo

k33 = W 2 33 -3 a x Vol (1.11),42 3E2 X Vol
2 33 ma

Simplifying this expression by cancelling all like terms from the top and bottom

36 
(1.12)

323 = E
8333

Equation 1.12 is the square of the material coupling coefficient for the "three-three" or longitudinal

direction.
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This same expression can also be derived by following the loading cycle shown in figure 1-3.

The loading cycle in the figure is the cycle for mechanical work in and electrical work out. Again,

half of the figure describes the electrical states of the system while the other half describes the

mechanical states of the system. The cycle begins at point E with zero as the initial conditions.

Between points E and F, the system is mechanically loaded in an open circuit configuration. Then

the material is closed circuited and mechanically unloaded to point G. From points G to H the

material is electrically unloaded back to the initial state of the system. Using this loading cycle, it

is possible to follow the same mathematical steps as the earlier derivation to find that equation 1.12

also describes the coupling coefficient for this loading cycle.

Discussion of Material Coupling Coefficient

From the derivation, it is obvious that the external mechanical and electrical work is applied on

demand and removed when it is no longer desired. In terms of the general system diagram presented

in fig. 1-1, the material coupling coefficient only describes .the interaction of the mechanical and

electrical states in the core system of a single active naterial, while "disconnecting" the electrical

and mechanical work sources when they are no longer desired. Additionally, when the work sources

are "connected", they are idealized work sources that have no restrictions on the interaction of

their work pairs, the interrelation of force and displacement or charge and voltage. While this

idealization makes it difficult to apply the material coupling coefficient directly to systems in which

the active material is working, it is a reasonable method of determining the relative worth of

different compositions of piezoelectric materials.

1.3.2 Effective Coupling Factor

Berlincourt expanded the idea of the material coupling coefficient by looking at the efficiency of

different cycles with both linear and non-linear loads applied[6]. He believed that applying the

mechanical and electrical work sources in different orders and at different times might change the

efficiency value of the system; therefore, he defined an effective coupling factor based on the different

cycles in which the efficiency was found. The effective coupling factor was still dependent on the

different boundary conditions of the problem and the different directional characteristics of the

electrical and mechanical values. He generally looked at the differences inherent in four different

cycles, as shown in fig. 1-4.
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Figure 1-4: Cycles used by Berlincourt for comparison to the cycle used to derive the material
coupling coefficient.

The first cycle applies a mechanical load in an open circuit configuration to a certain design

stress. At the design stress, the electrical load is attached to the material while keeping the same

stress level, adding a change in the strain of the system. Then the electric load is disconnected and

the the material mechanically unloaded to zero stress. The electrical load is then reconnected until

the strain of the system is again zero. It is assumed that the energy inside the work cycle box is

the "mutual energy", the energy available to the electrical load. The energy outside the box is the

reversible elastic energy of the system. Therefore, the coupling coefficient was defined as

k = (1.13)
Wmut + WM

The second and third cycles are the cycles applied if only one of the electrode pairs is available

to do work, and both are similar to the cycle applied for the material coupling coefficient. The

second cycle is the same beginning as the first cycle, but the electrical load is not disconnected after

its initial connection, instead the mechanical load is released with the electrical load connected.

The third cycle is the same cycle as is used in the derivation of the material coupling coefficient.

The definitions of the effective coupling factor are the same as the definition in the first case, but

with the appropriate reversible mechanical energy and mutual energy values used.
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The fourth case examined looks at what happens if the built up electrical energy from loading

the material open circuited is dissipated at multiple intermediate steps instead of all at once as

is done in the first case. Then the mutual energy becomes only the energy enclosed in the small

rhombohedrals instead of the amount of energy enclosed in the larger rhombohedral. Additionally,

this concept can be expanded to include dissipating energy in the methods used in either the second

or third cases. However, the equation that describes this state is the same as the equation that has

described the other three states.

Using these different loading cycles does change the amount of energy that can be extracted

from the system. For example, Berlincourt claims that the first loading cycle increases the effective*

coupling factor of PZT-4 to 0.81 compared to the material coupling coefficient of PZT-4 of 0.70.

He also considers the case of a thin disk with the edges clamped, quoting that the change in the

coupling factor using the first loading case is 0.68 compared to the material coupling coefficient

cycle value of 0.50.

Berlincourt then continues by examining the problem of using ideal linear and non-linear loads

in a one-time energy conversion of a system rather than a short circuit condition. The one-time

energy conversion is associated with the polarization or depolarization of a material. His ideal

non-linear load is a load where the entire value of polarization or depolarizing strain is delivered at

a single value of electric field or mechanical stress. Using this kind of behavior doubles the work

available over using a linear load. Figure 1-5 shows how he uses the linear and non-linear loads in

the depolarization cycle.

The first cycle shows the energy dissipated and the reversible energy if the material is depolarized

while short circuited. The third cycle shows the amount of mutual energy available if the material is

loaded using a linear electrical load, and the second cycle shows the energy available if the ideal non-

linear electrical load is used for energy dissipation during depolarization. Since the non-linearities

of the material are being considered, the equation to find the effective non-linear coupling factor

becomes

k 2 WMut (1.14)WMt + WM + WMD

Using the non-linear loading results in a coupling factor of 0.71, which is higher than the linear

coupling factor of 0.58. However, these coupling factors are for the complete depoling of the

material, and are therefore not sustainable cycle factors, but rather one-time energy extractions.

Throughout the beginning part of this work, Berlincourt was looking at the same type of
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Figure 1-5: Operational schematic used by Berlincourt to illustrate the use of linear and non-linear
dissipative loads.

information gathered by the material coupling, coefficient; namely, the internal energy conversion

of a system with the mechanical and electrical energy sources connected and disconnected at will.

Although this work does find ways of using the electrical and mechanical energy sources differently

to increase the energy conversion, it still does not allow for the system to change based upon what

it is working against. It is still only looking at the energy conversion of a single material in the

central core of the general system description with the external electrical and mechanical loads

applied at will.

The second part of the work looks at the energy conversion in a one-time process. Although

the formulation only allows for a one-time process, the basic formulation does consider the inter-

dependence of the material states on what it is working against. Unfortunately, the reliance of the

formulation on the complete depolarization of the material makes it difficult to expand the work

done to repetitive cycling done in standard material operation.

1.3.3 Device Coupling Coefficient

In an effort to explain how the coupling coefficient of a material changes when the material is

incorporated into a continuous device, Lesieutre and Davis derived a device coupling coefficient.

This device coupling coefficient uses the same work cycle that is used by the material coupling
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coefficient, but expands the work terms to include the effects of the passive material that the

piezoelectric material is incorporated into. Their objective was to determine if this device coupling

coefficient could be used to find a device who's energy conversion was higher than the energy

conversion of the material it was made from. However, the derivation does provide a framework

for the discussion of actuation efficiency.

The derivation of the device coupling coefficient puts the governing equation of the device in a

two-by-two block form with charge and displacement as the free variables. The governing equation

incorporates both the passive and active components of the device in order to fully describe the

inter-workings of the system. Using this governing equation, the device undergoes the same loading

cycle as is used in the derivation of the material coupling coefficient to determine an expression for

the energy conversion of the composite device. The results of this derivation for an actual device

are given in Chapter 2.

In terms of the framework that we are defining as the general operation of a piezoelectric material

system, the device coupling coefficient still only looks at the energy conversion of the central core

with the external electrical and mechanical load applied at will. However, unlike the material and

effective coupling coefficients, the device coupling coefficient does allow for a central core that is

more than just a single, active material. By looking at the effects of the passive material on the

authority of the active material, a significant step towards looking at the effect of an external load

was made.

1.3.4 Impedance Matched System Efficiency

Spangler and Hall and later Hall and Prechtl came close to looking at the effect of the external

loading terms on an active material when defining their impedance matched efficiency expression[3,

4]. The work they were doing was focused on discrete actuation systems for helicopter rotor

control. Their objective was to find the most efficient method of transferring the motion of the

active material, in their case a bender device, to an amplification device to provide the control

surface of the the rotor blade. In the course of their investigation, Spangler and Hall discovered

that "at most, one-quarter of the actuation strain energy can be usefully applied to actuating

a control surface" using linear relations for the transfer mechanism to the control surface[3]. The

optimum occurred at the impedance matched condition, where the effective stiffness of the material

matched the effective stiffness of the control surface. The equation derived to determine the effect

30



of different stiffnesses on the transfer efficiency is

1im= k (1.15)

where kj is the stiffness of the control surface and kB is the stiffness of the bender device.

This work fits into the general active material system framework presented in fig. 1-1 in a unique

way. Instead of the core coupled system that most of the previous work has looked at, the impedance

matched system efficiency is looking at a discrete actuator coupled to a transfer mechanism. The

single electro-mechanically coupled system box has been replaced by two boxes, one of the active

material system and the other of the transfer mechanism. Therefore, there are a set of work pair

arrows, force and displacement, between the two boxes within the coupled system box. These

secondary arrows encompass the relationship that has been defined by Spangler and Hall. The

efficiency derived looks at the efficiency of the strain energy between these two systems. But, the

same efficiency can be used to define the efficiency between the electro-mechanically coupled system

and the external work sink, the work done on the environment, for linear loads. However, the work

by Spangler and Hall still does not address the effect that the load the system is working against.

has on the work into the system. Therefore, it is not a true thermodynamic system efficiency, but

rather a transfer efficiency. The derivation of the transfer efficiency will be shown in Chapter 2 in

the uncoupled system analysis.

1.4 Approach

This paper derives a general expression for the work output and actuation efficiency of a system,

including external load effects, when working in a typical operational cycle. The expression is

derived through the use of a general two-block representation of a coupled system without con-

straining the coefficients to be linear. The general derivation assumes that the system is working

against a generalized load that can be represented by a generalized force, generalized displacement

and linear or non-linear load relationships. Through the use of this generalized system framework,

expressions for work output and actuation efficiency can be derived.

Three example problems are presented to illustrate the use of the general expressions for real

actuation problems. The first example presented is that of a one-dimensional, linear piezoelec-

tric material working against a one-dimensional, linear load. The actuation efficiency expression
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for the one-dimensional linear system is compared to the material coupling coefficient and a non-

dimensional work output expression to understand the effects of material coupling terms. The

second system examined is a piezoelectric bender system; two piezoelectric wafers bonded to a

substrate with an applied end-load, first examined by Lesieutre and Davis[l] to explore the con-

cept of a device coupling coefficient. This example fully demonstrates the benefits of using the

generalized coupled analysis and provides a comparison of the actuator efficiency to the device

coupling coefficient. The third example is of a one-dimensional, linear material working against a

one-dimensional, non-linear load. The non-linear loading functions are used to demonstrate how

their use can increase the work output and actuation efficiency of active materials.

To validate the theoretical results presented, initial test data was taken for a one-dimensional,

linear material working against a linear and non-linear load. The tests were taken using a newly

designed testing machine to allow loading of the material through the programmable impedance

functionality of the testing machine. This functionality allowed for testing linear and non-linear

functions easily sized for the sample tested. Through these tests, comparisons of the resulting work

output and actuation efficiency to the expected theoretical results are possible. The tests show

that the use of non-linear loading functions can increase the work output and actuation efficiency

of a one-dimensional system.

1.5 Organization of the Document

The document is organized in the same way the problem is approached. Chapter 2, Analysis of

the Actuation Efficiency of Electro-mechanically Coupled Systems, begins by defining

the terms and metrics used throughout the derivation. An uncoupled analysis of active material

systems is performed to illustrate the error in neglecting the coupling effects of active material

systems. Then an accurate method of finding the work throughput of load coupled systems is

derived for a general system starting from the integral expressions for work. The results of this

derivation are presented and simplified to illustrate the work output and actuation efficiency in

three examples.

Chapter 3, Design and Validation of Component Testing Facility, presents the design of

a general purpose testing facility for uniaxial compressive tests. It was decided that a new testing

facility needed to be built to enable testing of materials working against programmable impedances,

therefore the design and validation of the testing facility is presented. Since the facility was designed

32



as a broad-use facility, emphasis is placed on the requirements for the design, the design limitations,

and the final performance of the design.

Chapter 4, Validation of Theoretical Results, presents the testing methodology used to

validate the theory presented in chapter 2. The chapter begins with a general overview of what

needed to be tested and how this was to be achieved. Sample selection and material property vali-

dation is presented next. The overview is followed by an explanation of the different measurements

that were taken for both the linear and non-linear tests by using a stack as the active material

tested in the component testing machine with a specified impedance. The results of the linear and

non-linear tests are presented. The test results are compared to the theoretical results expected

from the derivation. After a comparison has been made, the results are discussed and possible

implications presented. The chapter concludes with the design and theoretical performance of a

device that could be used to load an active material non-linearly to increase:its performance during

operation.

Chapter 5, Conclusions and Recommendations for Future Work, concludes the docu-

ment. This chapter presents the overall implications of the work presented in the document and

highlights the important points of the research. Then, recommendations for.additional work in this

area are presented. Conclusions and recommendations are made for expanding the derivation of

the use of non-linear loading functions, for increasing the performance of an active material, and

for possible improvements and additional features of the Component Testing Device.
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Chapter 2

Analysis of the Actuation Efficiency

of Electro-mechanically Coupled

Systems

In order to discuss and compare the different performance metrics of an actuator system, the

system and metrics must be explicitly defined and stated. The system examined is a generalized

system comprised of a linear or non-linear electro-mechanically coupled core with a generalized

energy source input, working against a generalized load that has some defined linear or non-linear

relation. A schematic of the system is shown in fig. 2-1. The coupled electro-mechanical core could

be a variety of systems, including a discrete actuator and magnification mechanism, a mechanically

coupled system like a bender, or hydraulic actuation system. The input into this system is any

generalized scalar work pair, here represented by charge and voltage. The output of the system

is another generalized work pair, here represented by force and displacement. The generalized

work output could also be represented by a moment-rotation pair, a pressure-volume pair, or any

other scalar work product. Because of the general method used in the derivation, the resulting

expressions can be used for the analysis of any coupled system.

Work output and actuation efficiency expressions are derived for a generalized system with

non-linear material and structural relations that can be expressed in a two-by-two block form. The

coupled system is working against a load while externally undisturbed. Three example systems are

presented using simplifications of the general expressions. These systems are two one-dimensional

spring/actuator systems with a linear and non-linear spring constant, and a preloaded bender
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Figure 2-1: Schematic of general system representation. The electro-mechanical coupling block
can be a variety of distributed and discrete systems with linear and non-linear relations. The load
element is a generalized work pair with either a linear or non-linear relations.

device. For the derivation, a general two block representation of the piezoelectric coupled system

is used.

2.1 Definition and Metrics

The metrics that will be compared are the work output of the system and the actuation efficiency.

The work output is defined as mechanical work. The actuation efficiency is a true thermodynamic

efficiency and is defined as the ratio of the work output to work input. The mathematical definitions

for each of these terms are given in the following section, as well as the definitions for other useful

terms.

2.1.1 Piezoelectric Material Relations

For the low-power region, piezoelectric materials follow a determined linear set of governing equa-

tions that describe the electrical and mechanical interaction of the material. These equations have

four system states: T, the stress in the system in six directions; S, the strain in the system in six

directions; E, the electric field in the system in three directions; and D, the electric displacement in
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the system in three directions. These system states combine into two governing equations, making

two dependent variables and two independent variables. The dependent variables combine with

material constants togive equations for the independent variables. Typically this combination of

variables is expressed in matrix form as

where sE is the mechanical stiffness at constant electric field, d is the electro-mechanical coupling,

and ET is the dielectric constant at constant stress. This nine by nine matrix is typically reduced

using either plain strain assumptions, plain stress assumptions, or by looking at one-dimensional

relations only. Most of the work in this document will be based on a one-dimensional representation

of the active material, thereby using only a two by two representation of the entire matrix.

2.1.2 Mechanical Work

The mechanical work of a system is typically described as the integral of force2times the derivative

of displacement, or mathematically
f Xfinal

WM= Fdr (2.2)
f initia1

When assuming a linear force relationship, for example a spring system with F = kx, this relation-

ship becomes

WM = 2kx2 (2.3)
2

which is the familiar expression for the work done by a spring. In this derivation we will typically

be looking at the active material in terms of the force and displacement relations, however the

work can also be expressed more generally in terms of the stress and strain state of the system.

Therefore, the work expression in equation 2.2 can be transformed into a relationship with stress

and strain. The expression that relates force to stress is

F=TA (2.4)

where A is the cross-sectional area of the material. The expression that relates strain to displace-

ment is
x (2.5)
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where I is the length of the material.

Substituting the expressions in equations 2.4 and 2.5 into equation 2.2 results in the following

expression for mechanical work in terms of stress and strain

WM = 
S

fi
n a

l TAldS (2.6)
ISinitial

Generalizing this expression to allow for non-constant material properties over a volume is facilitated

by combining the area and length terms in equation 2.6 into a volume integral as follows

fS nai

WM , fina Td. dVol (2.7)
SSinitial

Either equation 2.2 or equation 2.7 will be used to find the mechanical work of the system. In most

actuator systems the mechanical work is the output work of the system. Therefore, the generalized

force/displacement product is considered positive when work is being done on the load.

2.1.3 Electrical Work

The electrical work of a system is found in much the same way the mechanical work is found by

taking the integral of the voltage times the differential charge. The typical electric work expression

is

WE = f i, VdQ (2.8)
JQinitial

When using this expression to find the work of a linear system, such as a capacitor with a charge

relation of Q = CV, this relation becomes

WE = VCdV (2.9)

WE = 2CV2  (2.10)

which is the typical definition of the work, or energy, in a capacitor. In the derivation we are

typically going to look at the system using charge and voltage expression for work, however the

work expression can be stated more generally using the electric field and electric displacement of the

system. Therefore, equation 2.8 can be transformed into an expression that uses electric field and

electric displacement. To do this, expressions relating the electric field and electric displacement
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to charge and voltage need to be used. The electric field and voltage relation is

V
E= (2.11)

t

where t is the thickness of the material between the electrodes. The relation of charge to electric

displacement is

Q=DA (2.12)

where A is the area of the electrodes which is typically the cross-sectional area of the material.

Using equations 2.11 and 2.12 in equation 2.8 to find an expression for work that uses electric

field and electric displacement results in

fDf inal
WE = EtAdD (2.13)

JDinitial

To find a more general expression that allows for the variation of the material parameters over

the volume, it is possible to combine the thickness and area terms into a.volume integral over the

material as follows =ffDnai
WE f ] in a EdD. dVoI (2.14)

Either equation 2.8 or equation 2.14 will be used to find the electrical work in the system. Again,

for most actuator systems the electrical work is the input work to the system. Therefore, the

generalized charge/voltage product is positive when work is being done on the coupled system.

2.1.4 Actuation Efficiency

Although the material coupling coefficient describes the efficiency with which a material can convert

energy between mechanical and electrical work, the coupling coefficient does not always give a good

indication of how a material will work in a real loading cycle. The cycle that the material coupling

coefficient is derived for is the cycle that maximizes the work conversion of a system, which is

appropriate when determining the best compositions for a given material. However, when working

in a device, the material coupling coefficient gives an inflated view of how the material will work

when perfect loading conditions do not exist. The loading cycle of a typical device applies and

extracts work simultaneously. Because of this, there are load coupling effects that can change the

efficiency of a working device. Therefore, a better measure of the efficiency of a device might be a
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Figure 2-2: Model of a one-dimensional spring/active material system.

ratio of the work out over the work in of a typical loading cycle.

The actuation efficiency of a system is defined as the work out divided by the work in when

working over a typical operational cycle of an actuator. In this cycle, the work in is defined as

electrical work and the work done on the system is defined as mechanical work. Therefore, the

actuation efficiency of a system will be defined mathematically as

W~t WM
Ef W (2.15)w". WE

2.2 Uncoupled analysis

A general use of an actuator is as a device that is working against a load in only one dimension.

Therefore, figure 2-2 shows a typical application of an active material. The figure shows an active

material, depicted as a spring with a certain stiffness, working against another spring of a different

stiffness that represents a structural load with an associated stiffness. The active material has an
applied electric field. The displacement of the attachment point of the two springs is monitored as
well as the force in the system. The active material is working one-dimensionally against the load.

By looking at a diagram of the stress-strain relationship of the system in figure 2-2, the current

method of finding the actuation efficiency of a system can be explained. A sample figure is shown in

figure 2-3. This figure shows the stress-strain relationship of the representative structure, the solid

line, and the stress-strain relationship of an active material at a given electrical field, represented

by the dashed line. The intersection of these two lines is the stress-strain state of the system at

a specific loading, or at a specific electric field. The area under the dashed line representing the

40



active material is the amount of energy in the active material available for mechanical work at the

given electric field as shown in the coupling coefficient derivation, or

Adashed = WMsystem (2.16)

The area under the solid line representing the structure is the energy in the structure for any given

stress-strain state. The area under the structure line from the intersection of the active material

line, represented in the picture by the shaded triangle, represents the amount of work that can

be put into the structure, or conversely taken out of the active material. The amount of work

represented by this area is referred to as the mechanical work out of the system while working

against a load, or

AshadeI = Fd WMoad (2.17)
Xi

When looking for the actuation efficiency done by the system, it seems reasonable to simply

take the amount of work that could be done and compare it to the amount of work actually done.

on the system since the material coupling coefficient describes the efficiency of the system when

the total possible work is done. The ratio of the relative amount of work done can be expressed as

a function of the stiffnesses of the load and piezoelectric material as

WMLd o I

WMte - where a =jk (2.18)

It should be noted that this is the same relationship derived by Spangler and Hall[3]. Mathemati-

cally, the maximum area that the shaded triangle can be for linear loads and linear active material

relations is a quarter of the area under the material load line which is reached only when the slope

of the two lines are equal and opposite, or

WMWoadmax when kE = -k, (2.19)-Moama "Wsse whn=4k

The square of the coupling coefficient is the maximum amount of work out divided by the maximum

amount of work into the active material, or

k2  WMsystein (2.20)
WEsystem(

Being able to only get a quarter of the maximum amount of work out of the material translates
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Figure 2-3: Intersection of material and linear structure load lines on a stress-strain diagram.

into being able to get a maximum actuation efficiency of the system of a quarter of the maximum

theoretical actuation efficiency, or a quarter of the material coupling coefficient squared. This is

shown by
- WMystem k 2 (2.21)

WE ystem 4 WEt, 4

Although the derivation presented above appears to have no flaws, it doesn't take into con-

sideration the effect that working against a load has on the electrical work into the system. This

oversight is remedied in the following section.

2.3 General Derivation of the Work Output and Actuation

Efficiency

The derivation of work output and actuation efficiency is initially done for the general case of a

coupled system. The derivation is then simplified to look at different example cases. The efficiency

is derived for a cycle that a material would see in operation with the active material-structure

system externally undisturbed throughout the cycle.
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2.3.1 General Derivation Framework

The governing equation for a quasi-static piezoelectric material of general configuration is presented

in a general, discrete form. This form can be derived using a variety of methods including Rayleigh-

Ritz formulations[7], FEM models, and others; and simplified through the use of static condensation

methods.

p(x,V) CS(x,V) v

In this equation x is the displacement vector, V is the vector of applied electric potentials, K

is the stiffness matrix of the system, p is the electro-mechanical coupling of the system, Cs is

the capacitance of the system under constant strain, F is the force vector, and Q is the charge

vector. K, p, and Cs can be non-linear functions of the independent variables x and V. In this

derivation, only quasi-static systems are being considered, so the dynamic terms are neglected. The

use of non-linear material models in the desired form, like that presented by Fripp and Hagood[8]

for electrostrictive materials, allow for a complete non-linear material model to be used in this

derivation.

Given the framework of eqn. (2.22), it is necessary to understand the relations of the structural

load that the coupled system works against. Generally the force-displacement relation for the load

can be written as

F1 = k (xi)xt (2.23)

where the subscript I refers to the generalized load. Note that the load relations are not constrained

to be linear.

Compatibility and Equilibrium. In order to determine the work equations, it is necessary to

determine some expressions that relate the state of the actuator to the state of the structure. The

only assumption that is made in this derivation is that the structure and actuator have forces and

displacements that are entirely working against each other. From this assumption, the following

force balance equation can be expressed by forcing equilibrium

rF= F (2.24)
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Substituting equations 2.23 and 2.22 in equation 2.24 results in the following expression

K(x, V)x - pT(x, V)V = k,(xl)xt (2.25)

Enforcing compatibility by requiring x = -xi results in the following expression from equation 2.25

x = pT(x, V)V (2.26)

K(x,V) +ki(x)

This relationship is an implicit relationship between x and V. The assumption used for the rest

of the derivation is that by specifying a voltage level, this equation can be iteratively solved for

a specific value of displacement. Therefore, the terms of the equation are assumed to be just

dependent on the voltage of the system.

2.3.2 Work Expressions

Electrical Work

Now that the constitutive relations have been derived and an expression for x has been determined,

it is possible to focus on deriving the work in and work out expressions for this actuator and

structure system. Starting with the electrical work

t Qfin,.i
WE fQi V4 Q (2.27)WE=Qiniial

The electrical work for actuator problems is the work into the system. Therefore, the following

relation holds

Win = WE (2.28)

It is generally desired to find all of the work terms as functions of the applied voltage, V since

the voltage is applied to the system and is directly related to the displacement of the system.

Therefore, to find a relation for the electrical work in terms of only voltage, we need to rewrite

our expression for Q, Eq. 2.22, without the displacement variable, x. Doing this by substituting

equation 2.26 into equation 2.22

Q = p(x,V)x+CS(x,V)V (2.29)
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(pT(x,V)p(xV) )

S= \K(x,V) + k1(x)+CSx'V))V (2.30)

Taking the variation of Q and substituting it into the electrical work expression, Eq. 2.27, results

in

f -- T(V)+vV M PT(v)v 16K(V) 0kl(V)WinK(V)+kV (K(V)+-k(V)) 2 ( 9V + p(V)
+vv Kpv (V +p (V ) (V + k s~v

p(V) ( T(V)V )+cS(V) + V Cs(V) VW (2.31)
+ V \K(V)+ k,() +C() V

Mechanical Work

The work into the structure is the work out of the system, defined by

SXfinal

WM =]lnta I (2.32)

Since the work on the structure was defined as the work out of the system, the following can be

written

Wot = WM (2.33)

Again, we want to find an expression for the mechanical work out of the system in terms of the

applied voltage. This is possible through the use of equation 2.26. Therefore, determining the force

in the system in terms of voltage by using equations 2.23 and equation 2.26

FL ki(x)x (2.34)

kl(x)pT(x, V)VF1  = K(x, V) + k1(x) (2.35)

Taking the variation of equation 2.26 and substituting into the work expression results in

6 T V
W V- kI(V)pT(V) PT(V) + vaP vV) pT(V)V aK(V) ak(V)
WK(V) + k(V) K(V) + k,(V )  (K(V) + k+V )) ( -V

(2.36)

Initially, writing displacement as a function of applied voltage might seem odd since we are

looking at the displacement of the spring. However, if we remember that the displacement of the

system at any point in time is generated by the applied voltage in the active material at that time,
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then writing the displacement this way makes sense.

Actuation Efficiency.

The actuation efficiency is the work out of the system divided by the work into the system. There-

fore, equation 2.36 is divided by equation 2.31 to find the actuation efficiency.

2.4 Example of a One-dimensional Linear System

It is possible to illustrate the above derivation through the use of a one-dimensional sample system.

The system considered is shown in fig. 2-2. The "three" direction of the system is along the

central axis of the springs. Additionally, the spring and piezoelectric are assumed to be of equal

cross-sectional area and length. Linear material and spring relations are used.

2.4.1 Material Relations.

The one-dimensional material parameters in the three direction are

S3 SET 3 + d33E3 (2.37)

3= d33T3 +ETE 3  (2.38)

where S3 is the mechanical stiffness under constant Electric Field, d33is the electro-mechanical

coupling, and ETis the dielectric constant under constant stress, all in the "three-three" direction;

and S3 is the strain, T3 is the stress, E 3 is the Electric Field, and D 3 is the electric displacement,

all in the "three" direction.

Rearranging them into equations with stress as a free variable, the equations become

T3 C 4S3 -e 3 3E 3  (2.39)

D 3  = e33 S3 + E 3 E 3  (2.40)

by defining e33, c3E3and es as

E _ 113 (2.41)
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e33 = d33cE  (2.42)

33 63 3 2 E (2.43)----- --d33 C33

where e33 is the electro-mechanical coupling of the system, c3Eis thecompliance of the active

material under constant electric field, and e 3sis the dielectric constant under constant strain, all

in the "three-three" direction. Equations 2.39 and 2.40 become the material relations used for the

active material. It is now possible to use the generalized expressions of the governing equation and

work expressions to find the work relations in this specialized case.

Finding Expressions for the Terms in the Governing Equation

. It To find the terms in the generalized governing equation for this specific example, the Ritz method

was used. Therefore, the electrical and mechanical mode shapes that fit the boundary conditions

of the problems must be found. The electrical mode shape chosen was

O CE=- (2.44)
1P

where x is the length along the center axis of the spring and lP is the length of the piezoelectric

material. The mechanical mode shape assumed is

IPM -(2.45)
tp

These assumed mode shapes were used to find the stiffness term, K; the capacitance term, Cs;

and the electro-mechanical coupling term, p. Finding the stiffness term results in

K 33 = c
3 A "  (2.46)
Ip

Using the electrical mode shape of equation 2.44 results in a capacitance term of

Ep

In a similar manner, the electro-mechanical coupling term can be found as

P e3Ap (2.48)
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It is now possible to use equations 2.46, 2.47, and 2.48 in the previously derived expressions for

work and actuation efficiency.

The final relation that needs to be derived in order to find the work expressions is the stiffness

of the structure in terms of its compliance. As is found above, for a one-dimensional structure, the

stiffness term is a combination of the compliance, length and cross-sectional area of the structure.

Therefore, without derivation, the following relation is stated as the stiffness of the load spring

c8A 8
k, =- (2.49)

where the subscript s refers to the spring. Since one of the initial assumptions in this example is

that the piezoelectric material and spring have the same effective length and cross-sectional area,

the following relations will be used

As= Ap A (2.50)

ls= lP= 1 (2.51)

2.4.2 Electrical and Mechanical Work.

The electrical and mechanical work in the system can now be found using the relations derived in

the previous section. The relations can be expressed in terms of K, Cs and p; or the volume terms

can be explicitly expressed and the equations found in terms of c, ES , and e33. Both will be done

here.

From equation 2.31, the electrical work in expression is

2K3  + 8 +V v 2  
(2.52)

Adding the definitions of K, Cs, p, and k. found in equations 2.46, 2.47, 2.48, and 2.49 and using

the area and length relations of equation 2.50 and equation 2.51 results in the following simplified

expression for the electrical work

2 1 cE + 33

21\ 33 + 8  1

The mechanical work out expression comes from equation 2.36. Adding in the terms from this
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derivation results in
1. / P33 )2 v2=Wo(uK Ic (2.54)=2 K3 +g k,

Making the same substitutions as were made in the electrical work expression results in the following

expression for mechanical work

Wot= A csEe v 2  (2.55)

The work relations can be found in terms of the material coupling coefficient, the stiffness ratio

and work into an idealized capacitor. The material coupling coefficient for the extensional mode of

operation[2] is

d33- (2.56)
• 833 33

The stiffness ratio of the system, a measure of relative stiffnesses of the elements, is

k, (2.57)

The ideal work into a capacitor is

WidLin 1 T v2 (2.58)
2 1

From eqns. (2.31) and (2.36), the electrical and mechanical work expressions become

{in( a k23 WideaLin (2.59)

Wout = (1+ 2 k3WideaLin = 77mechk3WideaLin (2.60)

where

lmhech = ( ) 2  (2.61)(a 1)+

When the work output in written in a non-dimensionalized form, it is apparent that the work

output is just a relation of the stiffness ratio multiplied by the material coupling coefficient. The

stiffness ratio relation, henceforth referred to as 2 lmeh, arises from the ratio of the work applied to

the load over the energy available to do mechanical work. By examining the force-displacement

diagram of the system, shown in fig. 2-3, the ?lmech term can be explained. The area under the

dashed line, the material load line, is the energy or work in the system available to do work on a
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load. The area under the intersection of the solid line, the structural load line, and the material

load line is the work put into the structure. T mech is the ratio of these two values, the amount of

work into the system compared to the available energy based on the stiffness ratio of the system.

2.4.3 Actuation Efficiency.

Using equations 2.53 and 2.55 to find the actuation efficiency expression results in

/ )2
Ef= 2(2.62)

C33 +C.,+ 3

The expression for the actuation efficiency, eqn. (2.62), can be written in terms of the material

coupling coefficient, k3 3 , and the compliance ratio, a, through the use of the relations found in

eqns. (2.41) through (2.43) in order to illuminate the significance of the expression.

Ef = Wo_t k3 (2.63)

[ +1 33
The numerator of eqn. (2.63) contains the term, = mh, that quantifies the area under

the material load line captured by the linear spring, or the ratio of the work done by the system

to the energy available to do work. T mech is the same quantity defined by Spangler and Hall[3] as

1 im, when discussing the maximum amount of strain energy transferable to a linear device. The

effect of the load on the work into the system can be seen in the term ( I) in the denominator

of eqn. (2.63). By setting this term equal to zero the load effects on the system are neglected and

the expression looks like the expression for non-dimensionalized work output. Setting the stiffness

ratio, a, to one reduces the new expression to the value found in the uncoupled analysis of the
12

system efficiency of !k33-

2.4.4 Results of the One-dimensional Simplification

It is necessary to look at what the expressions derived above mean for the design and performance of

a simple one dimensional system. Figure 2-4 shows the actuation efficiency in the one-dimensional

case as a function of the stiffness ratio, a, for various values of the coupling coefficient, k. Figure 2-4

also plots the variation of the non-dimensionalized work output for various values of the coupling
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Figure 2-4: Actuation efficiency variation with structural Stiffness for a one-dimensional system of
an active material working against a linear load. The actuation efficiency is: plotted for varying
values of k, the coupling coefficient, and S, the stiffness ratio.

coefficient.

The figure shows that for small values of the coupling coefficient, the actuation efficiency closely

matches the non-dimensionalized work output of the system becausethe electro-mechanical coupling

is weak. However, for larger values of the coupling coefficient, the stronger electro-mechanical

coupling results in a divergence of the actuation efficiency from the non-dimensionalized work

output. Additionally, as the coupling coefficient increases, the peak actuation efficiency occurs at

stiffness ratios greater than one, unlike the peak non-dimensionalized work output which always

occurs at the impedance matched condition.

A common belief is that the maximum efficiency of a one-dimensional system working against a.

linear structure is a quarter of the square of the coupling coefficient. This occurs when the stiffness

of the spring is equal to the stiffness of the piezoelectric material, making rlmech equal to one-quarter.

Although this impedance matched condition provides the most work done by the active material,

taking the load coupling of the system into account actually makes the most efficient stiffness ratio

greater than 1 for large values of the coupling coefficient. The actuation efficiency at this larger
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Figure 2-5: Model of bender structure being analyzed.

stiffness is also significantly higher than the maximum actuation efficiency predicted by the work

output expression. Therefore, when systems are designed to maximize efficiency, it is actually

beneficial to use an active material that is more compliant than the load it is working against given

the active material has a large coupling coefficient. This also underscores the importance of using

the fully coupled analysis when designing coupled systems for efficiency.

2.5 Example of a Bender Device

To further appreciate the importance of the load coupling on a system, the example structure

presented by Lesieutre and Davis[l] as a method for increasing the device coupling coefficient is

examined for its work output and efficiency characteristics. The model proposed by Lesieutre

and Davis shown in fig. 2-5 is that of a bender, composed of two piezoelectric wafers bonded to

a substrate, with a destabilizing preload on both ends. In this example problem, Lesieutre and

Davis demonstrated the effect a destabilizing mechanical preload has on the value of the device

coupling coefficient. Their derivation of a device coupling coefficient follows the derivation of a

material coupling coefficient using the constitutive relations applicable to the device. Through the

derivation, they demonstrate that an "apparent" definition of the device coupling coefficient goes to

one as the preload applied goes to the critical buckling load. From this result, they imply that it is

possible to get more work out of the device for the same amount of work applied to the device. The

following sections will compare the device coupling coefficient in relation to the actuation efficiency.

2.5.1 Lesieutre and Davis' results

The governing equation presented by Hagood, Chung and von Flotow[7] shown in eqn. (2.22) is

the starting point of the derivation done by Lesieutre and Davis. Because the system is a two-

dimensional system, one would expect to use the full matrix relations. They, however, defined q
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as the out-of-plane deflection of the system, allowing for a one-dimensional representation of the

system. Therefore, the matrix relations defined in eqn. (2.22) become in-plane components with the

exception of the electro-mechanical coupling term which has an in-plane and out-of-plane coupled

relation.

The following mechanical and electrical assumed modes for a beam in bending were used.

VbM = sin (-) OE=-L

The use of these mode shapes resulted in the following expressions for the stiffness, capacitance

and electro-mechanical coupling of the beam without a preload.

rb 2 P 3 2 + hbCb (2.64)
K 2L h3 + -1hb bh +

CS -E 2 3Lb
33L (2.65)hp

p 2be13 (hp + hb) (2.66)

Effect of the Device Preload

The axial preload on the system adds another work term to the expression used to derive eqn. (2.22).

This work term is similar in nature to the stiffness term found above and is often seen as a stiffness

reduction. Lesieutre and Davis included this axial preload term in the stiffness term, but found the

preload term independently since the device preload adds to the total work done on the system.

Using the assumed mechanical mode shape,. the axial stiffness term is

L 7ir\ 2

KG = P2 W (2.67)

This term is subtracted from the stiffness term K of eqn. (2.64) resulting in a new stiffness term,

Kt= K-K.

Device Coupling Coefficient

Lesieutre and Davis argue that although the mechanical preload adds to the amount of work put

into the system, the work from the preload should be ignored when looking at the device coupling

coefficient of the system since the preload can be applied statically. The device coupling coefficient
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that they derive when just considering the electrical work is referred to as the "apparent" coupling

coefficient. Since work is being done on the system by the preload, they also look at the coupling

coefficient with the preload work added in, referred to as the "proper" coupling coefficient. The

cycle that they use in the derivation of the device coupling coefficient is equivalent to the work

cycle used in the material coupling coefficient derivation.

Their derivation results in the following "proper" and "apparent" coupling coefficients, rewritten

from their original form as expressions in terms of a matrix coupling term, k =

k 2(2.68) k2Q + 1 + -Kak2
M Kt mf

= km+1 (2.69)

2.5.2 Work output approach

We now focus on finding the actuation efficiency of the system. A spring of stiffness k, acting at the

center of the beam represents the load. The electrical work into the system is found by simplifying

the expression found in eqn. (2.31) for this example, resulting in

W = Pri p2 + C s v 2  (2.70)

There are two forms of mechanical work present .in the system; the displacement that the spring

sees and the work done on the system by the mechanical preload device. For this problem, the

work into the spring is the work out of the system. The mechanical work done on the spring is

Wo., = 1ks ( +k p  ) 2 V 2  (2.71)

The mechanical work done by the preload is found directly from the expression for the mechanical

work using eqn. (2.67) as the stiffness seen by an axial load.

WmM (K P ) 2 V2 (2.72)
4 Kt + k,
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gi Actuation Efficiency

To better illustrate the effect of the external load on the system performance, the derivation of

the device coupling coefficient by Lesieutre and Davis[1l has also been adopted for the actuation

efficiency. The "apparent" actuation efficiency is the ratio of the mechanical work out only to the

electrical work in. The "proper" actuation efficiency includes the preload work with the electrical

work. In coupled systems where work is being done on. the environment, the "proper" definition

of the efficiency is the correct efficiency expression since the preload work cannot be considered a
V, steady-state source of energy in the system.

The "proper" actuation efficiency can be found in terms of the stiffness ratio a - k, and

matrix coupling term, k 2 , as

2273
Efp W Mk+k (2.73)

a Kt(l+i) m

and the "apparent" actuation efficiency is

W. F_ +o _ 7
Efa, = -__ =~ ~2]k (2.74)

WinE (i)k +1

2.5.3 Remarks on the Bender Device Example

In order to easily compare the device coupling coefficient and actuation efficiency. expressions,

sample values are presented in table 2.1. Figure 2-6 plots qmech (eqn. (2.61)) times the square of

the "apparent" coupling coefficient, 7 mech times the square of the "proper" coupling coefficient,

the "apparent" actuation efficiency, and the "proper" actuation efficiency all against the ratio of

the preload value to the critical buckling load for this problem. .The stiffness ratio, a, is 0.7 at

zero preload value. The "apparent" device coupling coefficient goes to infinity as the mechanical

preload increases. This is to be expected since Kt becomes small as the preload increases until KG

(eqn. (2.67)) exactly cancels K (eqn. (2.64)). However, the "apparent" actuation efficiency of the

device does not go to infinity as would be assumed since the "apparent" device coupling coefficient

does. As is also expected, the "proper" coupling coefficient goes to zero as Kt becomes small and

KG becomes large. However, the "proper" actuation efficiency does not approach zero or even

follow the same downward trend of the "proper" coupling coefficient. The discrepancy is due to
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Base Beam (aluminum)
hb thickness 0.0010
b width 0.0100
L length 0.1000
c~b Young's Modulus 7.000e+10

Pb density 2750
Piezoelectric Ceramic (PZT-5A; full set of material constants)
hp thickness 0.0005
cp Young's Modulus (constant electric field) 6.125e+10
ep piezoelectric coefficient -10.48
eS dielectric permittivity (constant strain) 1.330e-8
pp density 7250
Axial Load
P I axial load (compression is positive)

Table 2.1: Definition of variables and sample numerical values for bender device problem as used
by Lesieutre and Davis.

the relative output work value of the system.

The work in and work out of the system for various preload values are shown in fig. 2-7.

Examining this figure explains the trends shown in fig. 2-6. Although the total work into the system

increases with increasing preload more than the work out of the system, the relative increase of the

work out is much greater than the relative increase of the work in.

The effect of load stiffness is illustrated in fig. 2-8. This figure plots the same equations as

fig. 2-6 but against the stiffness ratio, ae. The preload value used is 75% of the critical buckling

load. As is shown, the stiffness of the load does influence the actuation efficiency of the system.

The difference in the "proper" versus the "apparent" work ratio decreases as the stiffness of the

load spring increases. Again, the actual work values divided are shown in fig. 2-9.

The results of the preloaded bender example show two things. First, it shows that for most

conditions in this example, the device coupling coefficient can be used for an initial estimate of the

efficiency of a system working against a load. The results also show that when an accurate value

of the efficiency is needed, a fully coupled analysis is necessary. However, before any conclusive

statements can be made about the device coupling coefficient's comparison to the actuation effi-

ciency, the derivation of both quantities must be performed on additional devices and the results

compared.
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2.6 Coupled Actuation Efficiency of Non-linear Systems

Although examining the work output and actuation efficiency for work against a linear load gives

insight into the work flow in a system, it doesn't provide a way to increase the work being done by

the active material. However, by examining a system that is working against a non-linear load, it

is possible to find a way to actually increase the work done on the load.

The motivation for looking into non-linear loads comes from the diagram showing the intersec-

tion of a material load line and a structural load line on a force-displacement graph, such as that

shown in fig. 2-3. From this diagram, we know that the work out of the structure when working

against a load is the area under the structural load line when it intersects with the material load

line. It is also known that the total amount of energy available to do mechanical work is the area

under the material load line. Therefore, the problem is to find a curve that encompasses more

area under the material load line before they intersect and to determine if this new line actually

increases the actuation efficiency of the active material.

Defining the non-linear loading function as a non-linear stiffness term, k,(q), the work ratio can

be found by following the steps used in the general derivation presented in section 2.3. The same

one dimensional spring system, shown in fig. 2-2, is used with a non-linear spring instead of a linear

spring. Using linear material relations, the derivation equates forces and opposite deflections and

solves for the work in and work out of the system.

2.6.1 Work derivation

Beginning with the system shown in fig. 2-2, where the material relationships are given in eqns. 2.39

and 2.40 and the spring relationship is given by:

F, = k,(x)x, (2.75)

Equating forces and opposite displacements, we have the following relationship for displacement

similar to eqn. (2.26)
P33 V (2.76)

X K 33 + k8 (x)

Unlike the linear case, eqn. (2.76) does not represent a closed form solution for displacement because

the load stiffness, k,(x), varies with displacement. However, for a given value of voltage, V,

eqn. (2.76) can be solved recursively to determine the value of displacement, x, and stiffness, k8 (x),
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that satisfies the relationship. Therefore, the displacement and load stiffness are only functions of

the applied voltage and can be represented as x(V) and ks(x(V)) or simply k,(V).

Again, the integral form of the expression for work as presented in eqn. (2.32) is used. Simpli-

fying eqn. (2.36) results in

w f k (V) P ( 33 p33V Ok,(v)
M , K3 3 -+kS(V) 3 K33 + k(V) (K 33 + k.(V)) 2  -V2

In the same manner, it is also possible to determine the energy into the system while working

against a non-linear load. Simplifying the expression found in eqn. (2.31) results in the following

equation for work in

Wn f{c ± IV 3  V3 +k(V) 6V (2.78)
W . =3 K 33 + k(V) K 33 + k,(V) 49V

The actuation efficiency is found by dividing eqn. (2.77) by eqn. (2.78). Since linear -material

relations are being used, the actuation efficiency be written in terms of the material coupling

coefficient as

fl/-2 (_ k(V)K 33 . V v ak V)~ V8V
Wmu R 1-3 (K 3 3+k.(V))2 I\ 3 3 +k(V) / (.79g33+ (Y)(2.79)

Wn fj , {1 -k2 k3 ( K323 k(V[)1 K +k(V) VV

where k 3 = .
S33C33

2.6.2 Remarks on the Non-linear System Derivation

To illustrate the performance increases possible through the use non-linear loading functions, two

sample non-linear loads are compared to the impedance matched linear load. The non-linear loading

functions were chosen due to their similarity to physically achievable functions using zero spring

rate suspension systems. Figure 2-10 depicts the two chosen functions and the linear function for

comparison. The expressions used to find these loading functions are:

Flinear x

Fbi Xfrte

Fnon-linearl x exp f5.45 7

Fbi 
Xfree
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Figure 2-10: Linear and non-linear loading functions with the material load line at maximum
applied voltage. The area under the curves represent the amount of output work is possible by
each.
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The work out is the area under the loading function curve as depicted on the force-displacement

diagram. Pictorially, it seems that the first function encloses twice the area of the linear function,

signifying that there should be about twice the work out of the system. The second function looks

like it encloses about three times the area of the linear system, corresponding to three times the

work out of the system.

Optimal Trajectory Approach for Finding the Maximum. The Principle of Optimal tra-

jectories seems well suited to a problem such as this where it is desired to find the maximum, or

minimum, of a function given a set of conditions. Typically, a cost function in terms of x, i, and t,

where x is a state and t is time, is determined as an expression of what needs to be maximized as

well as the conditions associated with maximizing it. For this problem, a problem statement might

be: To maximize the area under the curve for a given arc length while making the end point lie on

the material load line. With this problem statement, a cost function can be written, analyzed using

the methods of optimal control, and a trajectory determined that will maximize the area under the

curve. Since a function was needed merely to show that it is possible to get more work out of the

system with a non-linear load than with a linear load, the maximum function was not found using
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this method, but rather a representative curve was chosen.

Results. In the following figures, an adaptive time step was used to ensure that all of system

behavior was properly captured. The values used to plot the functions are a coupling coefficient of

k33= 0.75 and a stiffness ratio of 1 in order to compare the non-linear loading functions with the

impedance matched design decision.

* Figure 2-11 depicts the instantaneous work done by the system, eqns. (2.77) and (2.78). The

*: work in and work out of the system while working against the two non-linear functions are compared

to the work done when working against the linear function. The comparison shows a 99% increase

in the work out done by the second non-linear function at the peak of the cycle. The work out of the

first nonlinear function increases by 198% when compared to the linear function. However, there

is also a corresponding increase in the work into the system when working against the non-linear

loads.

Figure 2-12 shows the actuation efficiency of the system with each of the non-linear loading

functions and the linear loading function, eqn. (2.63). The non-linear functions increase the actu-

ation efficiency of the system significantly compared to the linear actuation efficiency even though

there is an absolute increase in the work into the system. The second non-linear function increases

the actuation efficiency of the system over the linear efficiency by 75%. The first non-linear loading

* .function increases the actuation efficiency of the system by almost 100%.
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These results show that the use of non-linear loading functions theoretically make it possible to

increase the work out of the system for the same applied maximum electric field. Additionally, the

increase in work output corresponds to an increase in the actuation efficiency of the system. There-

fore, with the correct non-linear loading function, significant increases in the useful performance of

active material systems may be possible.

2.7 Conclusions

The work presented demonstrates the need for using the fully coupled system equations when

examining the actuation efficiency of a coupled system in normal operating conditions. It has shown

that the electro-mechanical coupling terms affect the expected performance for linear systems as

well as non-linear systems. The work has also demonstrated the importance of looking at the

true actuation efficiency of a system rather than relying on the material coupling coefficient as an

approximate measure of the actuation efficiency of a system. However, it was shown that the device

coupling coefficient does give a. reasonable initial approximation of the efficiency of a system.

Through the use of the work expressions for a system under constant operation while working'

against a load, it has been possible to demonstrate a method for achieving a higher actuation

efficiency over the same voltage cycle by utilizing the coupled nature of the piezoelectric governing

equations. The coupled nature allows for a greater actuation efficiency and work output of systems

that are working against a non-linear loading function instead of a typical linear load.

To get the fullest application of this work, it is necessary to design loading devices that load

the active material non-linearly while loading the object it is working against linearly. When an

efficient device of this kind is developed, greater actuation efficiency of active materials can be

achieved when they are working in many applications. This derivation can also be expanded to

include other classes of materials with similar results.

.I
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Chapter 3

Design and Validation of the

Component Testing Facility

3.1 Motivation for the Component Tester

In order to verify the proposed derivation of the actuation efficiency, it is necessary to devise a test

where it is possible to measure the work, both mechanical and electrical work, of an active material:

while working against a load. The guidelines for the test are that it must uniaxially allow an active

material to work against a specified load, either linear or non-linear, and electrical and mechanical

work must be measured. These guidelines led to the design and fabrication of a comprehensive

compressive testing machine.

The comprehensive compressive testing machine was designed and built to test many of the

different testing environments needed to test active materials, typically stacks and single crystals.

Therefore, many of the requirements and design decisions were not based solely on the testing

:* requirements for the verification of work throughput in active materials working against loads.

3.2 Component Tester Design Requirements

The baseline requirements of the component tester are derived from general stack testing require-

ments. It is designed to be a full scale testing facility to comprehensively test most properties

of active materials. Generally, the testing requirements are devised to enable testing that is not

currently possible with commercially available machines. The eight main requirements identified
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are:

* To provide uniaxial testing with load application up to 8900 N and programmable impedances

with a force resolution of 100mN

* To provide closed-loop testing capabilities at frequencies up to 1 kHz

e To provide a testing facility that accommodates samples from 0 to 120 mm long

* To provide position sensing of up to 130 microns at an accuracy of 30 nm

* To provide temperature environments of -50 to 200°C

e To provide the capability to perform "free strain" and "blocked force" tests

* To compensate for non-parallelism in the sample faces

o The ability to test most kinds of piezoelectric, electrostrictive, magnetostrictive and magneto

shape-memory materials

As the design progressed, it became apparent that some of these requirements were harder

to meet than others. The main "design driver" requirement is the ability to test samples at 1

kHz. This requirement not only affected the mechanical design of the system by constraining the

first axial mode to be above 1 kHz, but it also constrained the piezoelectric positioning units to

certain stiffnesses and capacitances. The resolutions of these issues are explained in greater detail

in sections 3.4.1, 3.5.4, and 3.5.5.

Since the temperature testing facility was not needed for the tests performed, a facility was

designed but not constructed. The design is discussed in some detail in section 3.4.4, but is not

carried farther than that.

The satisfaction of the rest of the design requirements is discussed throughout the following

sections where the complete design is presented. Where applicable, the satisfaction of any particular

design requirement is explicitly mentioned.

3.3 Review of Commercially Available and Published Designs

Before a full scale design and fabrication process was started, a variety of commercial testing fa-

cilities were examined to determine if they could meet the testing requirements. Machines from
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both Mechanical Testing Systems, Inc. and Instron, Inc. were examined to see if their high fre-

quency testing machines could meet the derived requirements for the component testing facility.

Unfortunately, the machines produced by each company for high frequency testing either did not

allow testing at high enough frequencies, or did not have the position and load resolution neces-

sary to test the materials. An additional problem of the commercially available machines is that a

programmable linear or non-linear impedance would be difficult to implement.

Designs published in recent literature were also examined to determine if a previously published

design would provide some insight into the design of this testing facility. An important source of

design ideas was a paper by P. Pertsch et al[9]. They presented the design of a uniaxial compressive

loading device for small samples. The facility is circular with a bias load applied by screwing on a

plate that works like a jar lid in conjunction with a spring of a test-specified stiffness. The design

of the facility they presented was also designed for high frequency testing. From this device, the

idea of circular sections to increase the natural frequency of the system was taken. This design

modification almost doubled the natural frequency of the component testing facility, allowing for

closed loop testing capabilities at much higher frequencies.

Also from published testing facility designs, ideas for smaller improvements for the testing

machine were garnered, including different optical measurement systems[10], alignment solutions

for uniaxial compressive testing[9, 11, 12, 13], and temperature testing ideas[14, 15]. The methods

and benefits of different measurement techniques were weighed and the most practical and relevant

ideas were incorporated into the design of the testing facility.

The final testing machine design was primarily based on the previous designs of compressive

testing facilities in the Active Materials and Structures Laboratory at MIT; the most recent de-

signed under Eric Prechtl. The previous testing facilities used a laser interferometry system for

displacement measurements and a spring loaded screw for loading the system. These facilities were

used to measure the compliance of different materials at low load levels and manually applied load-

ing profiles. The basic shape of the testing facility follows the same design with modifications made

to enable larger sample size, the incorporation of high frequency positioning devices and automated

high frequency testing.
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Figure 3-1: Schematic of the Compressive Testing Machine including the Electronic Operation of
the System.

-3.4 Component Testing Facility Design

The overall design of the component tester is split into the mechanical design and the electronic

design. The mechanical design provides the mounting location and load application of the samples

and enables the testing of many kinds of samples. The mechanical design carries the brunt of the

innovative design in order to achieve the high frequency testing capability by requiring the first

axial mode of the testing machine to be above 1 kHz. The electronic design provides the sensing

and control capabilities of the testing facility and is primarily made up of commercially available

products that have been selected for their sometimes unique ability to provide the exact combi-

nation of specifications needed. The electronic design enables some of the difficult measurement

requirements to be met as well as providing the means to have closed loop control of the testing ma-

chine. A schematic of the component tester is shown in figure 3-1 while a picture of the mechanical

design is shown in figure 3-2.

The design is centered around a large cage-like section that allows for the position adjustment

necessary to test many different length samples. To avoid requiring the entire sample adjustment
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Figure 3-2: Compressive Testing Machine

cage to move during testing, a smaller circular section is suspended in the middle of the large

pieces on a flexure mechanism. This circular section is the section that actually provides the high

frequency motion to the sample. The circular plates are acted upon by a set of piezoelectric. driving

stacks that provide the small scale force and motion needed to test the samples. The piezoelectric

stacks react against the back wall of the positioning cage which is attached to the large scale

positioning device. The large scale positioning device adjusts the position of the entire cage to

adjust for sample size and can provide a large preload to the sample when needed. The entire

cage assembly is mounted on four rods through embedded bushings to provide ease of motion.

Friction clamps from the cage to the rods are also attached to prevent the cage from shifting during

sample testing and to provide a motion-free surface for the pzt driving stacks to react against. The

entire assembly is equipped with panels that attach to the outside of the end-blocks and react the

unfavorable shear and torsional loads that may arise at high frequencies.

Because of the natural split of the design, the different "halves" of the design are discussed as a

group with attention paid to the critical components. After the discussion of the main design, the

other system components are discussed and the design of the thermal testing facility is presented.

3.4.1 Mechanical Components

In general, there are two forms of mechanical components in the design; specially machined pieces

and mechanical positioning and loading devices. The specially machined pieces were all designed

with the use of the Parametric, Inc. program PRO Engineer. Most of these pieces were then sent

to Hillcrest Precision Machine Corporation to produce the parts. The complete set of drawings are
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found in Appendix A. There are seven primary parts to the machined parts and an additional four

kinds of connecting pieces. The seven parts consist of two end blocks, the back piece of the mounting

cage, the two outside front pieces of the mounting cage and the two inside pieces of the cage that

provide for load application. The end blocks not only provide positioning of the large rods, but

also provide a mounting surface for the sample, a load return path to react the large system loads

through, and an attachment location so the machine stays on the table. The connecting pieces are

the four large diameter outside steel or alumina rods, the three alumina braces that connect the

two inside pieces to provide space for the displacement sensors, four steel rods that connect the the

two front pieces of the mounting cage, and four adjustable threaded rods that provide a loading

path between the front and back pieces of the mounting cage. The sample is mounted between

one of the end blocks and the inside piece of the cage which both have tungsten carbide inserts

that provide a stiff mounting surface for the sample. The materials used in the design were chosen

for being low-compliance, low weight materials and the pieces were sized for the satisfaction of the

functionality of the design while keeping the machine as small and light as practical.

There are three different positioning devices; a large scale linear positioner and two sets of

piezoelectric small scale positioning devices. The large scale positioning device is a Morat, Inc.

Flexline linear positioner. It provides for the positioning of the cage depending on sample size. It

also can provide a large preload force of up to 20,000 N on the entire system while allowing very

small motion with each turn of the motor. The piezoelectric positioning devices are two sets of

three piezoelectric stacks manufactured by Kinetic Ceramics. One set of stacks has a large free

displacement and a small blocked force while the other set has a larger blocked force and a small

free displacement. The two different sets of stacks are necessary for getting the best performance

of the system depending on the tests run and samples tested. The stiffer stacks allow for increased

natural frequencies when a lower total displacement is acceptable. The stack selection was made

in order to be able to test all samples identified in all kinds of tests with one set of stacks or the

other. More about stack selection is identified in section 3.5.4.

3.4.2 Electronic Components

The electronic components are the core of the measurement and control systems of the testing

machine. The measurement systems are the optical displacement sensors and the two load cells

with their associated conditioning devices. The control system parts are the motor controller for
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* the linear positioner, the amplifier used to power the piezoelectric stacks, and the computer with

its National Instruments/LabVIEW data acquisition and control hardware and software.

The measurement systems were chosen primarily for their range, sensitivity and frequency

response. The position measurement system chosen is the MTI 2000 Photonic Sensor. It is a fiber

optic measurement system that measures the displacement of a surface based on the intensity of

light that is reflected into its receivers. With two probes measuring the displacement of each end of

the sample, a differential measurement is taken that describes the motion of the sample. The range

of the device is between' 0.127 and 0.51 mm with a resolution of 25 pm. The system can measure

displacements at a frequency up to 20 kHz. This device satisfies the displacement measurement

requirement.

Two different load cells were chosen in order to satisfy the load sensitivity and frequency response

requirement since no one load cell could adequately satisfy both parts of the requirement. The first

load cell chosen is the Entran miniature load cell with a range of 13.350 N, a resolution of plus

or minus 4.5 N, and a frequency response of DC to 700 Hz. The load cell is a strain gage-type

load cell, so an amplifier conditions the signal for use in the control loop. The second load cell is

a Kistler quartz load cell model 9212. It has a range of 22,250 N, a resolution of plus or minus

4.5 N and a frequency response of 1 to 3000 Hz. It is a high resolution quartz load cell; therefore,

a charge amplifier conditions the signal from the load cell. Between the two load cells, the force

measurement requirement is met.

The control systems power the positioning devices and are the output variables in the control

loop. The amplifier was selected for its peak-to-peak voltage output characteristics, the peak current

rating of the system and the frequency response of the system. The selected amplifier is made by

Kinetic Ceramics and has a three channel output with an 800 V output, 1.5 Amp maximum current

output per channel, and a frequency response of DC to 4 kHz. The other amplifiers considered

and the basis of the performance requirements are explained further in section 3.5.5. The motor

controller selected to power and control the 208V 3-phase AC motor in the linear positioner is

an IDM variable frequency drive controller, 5M series. The controller was selected for its simple

operation and its variable frequency control feature.

The final piece of the control system is the computer. A computer was needed to run the

control system and take data from the many different instruments in the system. Since National

Instruments' LabVIEW data acquisition system was selected as the software used, a computer that
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was compatible with the software and configured to allow the software and hardware the highest

possible performance was needed. This translated into a Gateway computer with a Pentium II 333

MHz processor, a free PCI expansion slot and 96 M-bytes of RAM. With this system it should be

possible to control the system with six inputs and two outputs at 1 kHz.

3.4.3 Support Hardware

To make the testing machine into an independent testing facility, it was necessary to purchase

some support hardware. The support hardware purchased was a dedicated optics table and an

instrument rack. The optics table selected was a Newport Slimline series bench with a RS3000

series table top and isolated legs. It is a 30" by 72" table that only holds the testing machine and

some of its instruments. The instrument rack houses the computer, monitor and data acquisition

system.

3.4.4 Thermal Testing Facility Design

A thermal testing facility was designed to provide a thermal environment -that can be controlled

from -50 to 2000C. The design is based on a thermal testing design by D. Burianek and S.M.

Spearing for testing a composite sample at 350°F[15]. The design consists of a hinged cylinder that

fits the length of the sample and closes around the tungsten carbide inserts that are offset from

the surface of the plate. The cylinder is an aluminum cylinder covered by an insulatory material.

A sketch of the design is presented in figure 3-3. The shape of the container is cylindrical in order

to allow the user to open the thermal chamber to position the sample before testing but while the

facility is in place. The internal temperature is regulated through a hole in the enclosure designed

to allow for a heat gun nozzle or a coolant system hose. The heated or cooled air is not released

directly at the sample, but rather is deflected away from the sample by metal barriers that divert

the flow around to the walls of the cylinder. An internal thermocouple should be used to regulate

the temperature inside the cylinder, allowing for the heating or cooling element to be turned on

when necessary through the use of a temperature regulator. The cooling equipment recommended

for use in this system is the Cyrostream Cooler or similar system that is primarily used for cryogenic

cooling of crystal samples. For heating the system, any variable-temperature heat gun would work.

Temperature control of the inside of the cylinder can be achieved by using thermocouples and

temperature regulatory systems by Omega.
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Figure 3-3: Sketch of Initial Design of a Temperature Testing Facility for use with the Component
Testing Facility.

3.5 Design Issues

The following section describes how the different design decisions were made. The analysis per-

formed for each decision and the different options examined are presented. A flow chart of the

design process is presented in fig. 3-4. As can be seen, the design process was a highly iterative pro-

cess in order to satisfy the design requirements completely. However, this analysis process enabled

the best possible design decisions for meeting the specified requirements.

3.5.1 Compliance Budget

To size the plates and rod diameters it was necessary to construct a compliance budget to make

sure that the stack displacement is not lost in compressing soft members in the load path of the

machine and instead compresses the sample. Both axial and bending compliances were calculated

and considered. Generally, the compliance of the plates axe of the order of 10- 9 in/lb and the

compliance of the rods axe on the order of 10- 8 in/lb. The equations for finding the axial and

bending compliance are:

ca=al (3.1)

cbend W (3.2)
2Eh3tP

where 1 is the length, E is Young's Modulus, A is the cross sectional area, w is the width of a plate,

h is the height of the plate, and t is the thickness of the plate. Only the axial compliance was found

71



00

0 C,,

)0 C

00

Lc

CD E

t b~

Figure~~~~~~~~~~ 3-4 FlwCatoEh rcs sdi eemnigtefnldsg eiin fteCm
pressie Tesing F ciy

Do72



for rod elements while both the axial and bending compliance was found for plate elements. Adding

the compliance of each piece together gives the total compliance of the system. The compliance is

then compared to the driving stack compliance in order to determine how much stack deflection

happens in the system. Once the deflection in the system is determined, then the deflection possible

in the sample is found to make sure that it is significant enough to be measured during stiffness-type

tests where the sample is not active. An example compliance budget is shown in figure 3-5. The

spread sheet is set up so that material choice and part sizing is easily changed within the spread

sheet. Part sizing to minimize compliance is traded with the desire to minimize weight in order to

increase the natural frequency of the system.

3.5.2 Design for High Frequency First Mode

Since the major design requirement was to have the first axial mode of the system above 1 kHz,

.it was necessary to define a model that would compare the different material choices and sizes to

determine how the material choice and configuration effects the natural frequency of the system.

The stiffness and mass of the rods and plates were determined for each size and material choice.

These values were put into a four node dynamic model. The model was a simple five spring-four

mass model working against a wall. The pictorial representation of the model is shown in figure 3-6.

The different masses are labeled in the figure. Since the outsides of the front plates of the cage

are not moving during testing, the front plates are only the mass of the inside circular sections.

The rods are the springs that connect the different pieces. The mass of the rods and braces are

scaled and put into the masses of the ends. The spring between the front and back sections of the

cage consists of the load cells and stack stiffnesses. The back of the cage is clamped to the large

rods during high frequency operation, therefore the large rod stiffness is split into two pieces, the

stiffness from the back wall to the back of the cage and the stiffness of the rods from the back of

the cage to the front end piece. The braces between the inside sections of the front of the cage are

the stiffness of the spring between those two sections. The stiffness of the rods was determined by

the rod stiffness equation
EA

kaxial 1 (3.3)

where E is the Young's Modulus of the material, A is the cross-sectional area, and I is the length of

the material. The mass of the plates were determined by the volume of the plate and the density

of material used.
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Figure 3-5: Sample compliance budget
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Figure 3-6: The four mass dynamic model of the system.

The compliance budget spread sheet was used to calculate the mass and stiffness of the different

elements. This allowed for changes to the size and material choice of the different system elements

to be recalculated automatically. The masses and stiffnesses were then put into a Matlab program

that calculates the natural frequencies and frequency response of the system., The stiffness matrix

was found to be
k0 + k, + k 4  -k 0 -k4

-ki k, +k 2  -k2 0

0 -k 2  k2 + k3  -k3

-k4 0 -k 3  k3 + k4

where k0 is the stiffness of the ends of the rods, k, is the combined stiffness of the stacks and load

cells, k 2 is the stiffness of the braces, k 3 is the stiffness of the sample, and k4 is the stiffness of the

rods. The mass matrix is
M1  0 0 0

0 M 2  0 0M = (3.5)

0 0 M 3  0

0 0 0 M 4

where M1 is the mass of back section of the cage, M/2 is the mass of the inside back piece of the

front part of the cage plus a scaled mass of the braces, M3 is the mass of the inside front piece of

the front part of the cage plus a scaled mass of the braces, and M4 is the mass of large end block, a

scaled mass of the rods, and a scaled mass of the outside of the plates from the front cage section.

The eigenvalues of the square root of the K matrix divided by the M matrix were found, which

are the modal frequencies of the system. A state space dynamic model using the above mass and

stiffness matrices and assuming 1% damping was also constructed. The use of the dynamic model

was important in deciding upon the final design of the testing machine since everything from piece

sizing, material selection and general configuration affects the resonant response of the system. The
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final decisions based on the design trades is presented in subsequent sections.

3.5.3 Rod and Plate Material Selection

The material choice for the rods and plates was very important for maximizing the frequency of

the testing machine. Therefore, both traditional and non-traditional materials were considered for

the construction of the machine. The materials compared for the plates were aluminum, steel, and

beryllium. Although the beryllium plates gave the best system performance, the manufacturing and

material cost was significant compared to the increased performance over the use of aluminum. As

expected, the mass of the steel plates was significant and severely hindered meeting the frequency

performance requirements of the testing machine.

The rod materials compared were steel, beryllium, and alumina. Generally the rod material

had a greater impact on the natural frequency of the system than the plate material. Therefore,

the rod material was the focus of a more detailed design study. Beryllium rods were eliminated

immediately since a manufacturer that was willing to produce the rods with the desired tolerance

was not found. Plots of the theoretical natural frequency of the system with the remaining rod

material choices is plotted against cost to help quantify the performance relations. Eight different

systems are plotted for each rod material choice; combinations of stack choice, either with one or

three stacks; load cell choice, either with one or three Entran load cells; and plate material, either

aluminum or beryllium plates. The comparison is shown in figure 3-7. The cost difference between

the different rod choices is only the difference in the material and' manufacturing costs of the rod

material. The other cost differences are the stack, load cell, and plite cost differences which are

constant for all of the rod choices.

The chosen design, was the alumina rods with aluminum plates, 3 stacks and 1 strain gage load

cell. The alumina rods gave an increased performance of 200 Hz on average over steel rods. The

single load cell was decided upon because it is possible to configure a system without load cells by

mounting strain gages on the back plate to measure the load in the system. Using the strain gages

would increase the possible system performance over the performance possible by using three load

cells.
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Figure 3-7: Natural Frequency ,Comparison for different rod materials and system configurations
versus system cost. Rod materials plotted are Steel and Alumina.

3.5.4 Driving Piezostack Selection

As demonstrated in the above two sections, the piezoelectric stack selection has a significant'impact

on the natural frequency and compliance budget of the system. Because of this, the stack selection

was arguably the most important selection for the best performance of the system. A variety

of stacks were examined with different stiffness, free deflections, and natural frequencies. The

comparison of the free deflection, blocked force and natural frequency of each of the stacks with

the required free deflection, blocked force and natural frequency from the different samples to be

tested is shown in figures 3-8 through 3-10. The stacks in the comparison are Polytec, PI stacks

identified by their part number. From these comparisons it was determined that any one stack

could not adequately test all of the samples. Therefore two different sets of stacks were selected

for use depending on the type of testing to be done so that all of the sample types could be tested.

Because the dual selection was necessary, it was decided to choose two stacks very different from

each other to get the best range of system performance.

The samples that the stack performance was compared to are representative sample types that

could be used in the testing machine. "XIRE" samples are stacks from Xinetics Inc. and properties

were used from published properties from company papers[16]. "S" samples are from Sumitomo
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Metals and properties were taken from their product literature[17]. "Eric's Stack" properties are

based on the desired properties of a stack to use in the X-frame actuator designed by Eric Prechtl

and Steve Hall[18]. The stack selected should have a larger free stroke then the samples in order to

test the samples in "free strain" conditions. The blocked force of the stacks should also be larger

than the blocked force of the sample in order to test the sample in the "blocked force" conditions.

The natural frequency of the system should be as high as possible during the testing of each sample

to allow characterization at high frequencies, therefore the selected stack should maximize the first

resonance of the system.

Two kinds of Polytec, PI stacks were originally chosen to meet the system performance. They

were stack models P242.40 and P239.90. However, because of incompatibilities in the electrical

connections between the Polytec, PI stacks and the Kinetic Ceramic amplifier, the Polytec, PI stacks

were returned for stacks supplied by Kinetic Ceramics that have similar performance metrics. The

electrical connections between the Kinetic Ceramic stacks and amplifier are compatible, making

the system safer to use.

BEST AVAILABLE COPY
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3.5.5 Amplifier Selection

The amplifier was selected for its bandwidth, peak-to-peak voltage characteristics, current capabil-

ity, and total cost. In order to be able to control each of the three stacks separately, it was necessary

to have three different channels in the amplifier. This corresponded to either having one amplifier

unit with three channels, or three amplifier units with one channel each. The combination of the

bandwidth and power requirements made the choice of amplifier a difficult one since not many am-

plifiers are made that satisfy the requirements. The testing goals required that the amplifier have

a bandwidth of DC to 1 kHz and produce about 1 kilowatt of power. The one kilowatt of power

needed to be divided into 1000 V peak-to-peak and 1 Amp maximum current in order to effectively

drive the large capacitance loads at high frequencies. This combination of requirements resulted in

the choice of one amplifier, the Trek model P0617A. Although this amplifier could exactly match

the technical requirements, the cost of $18,000 per channel made the amplifier financially infeasi-

ble. Since the bandwidth requirement could not be relaxed, the power requirement was relaxed to

a 800 Watt requirement. At this lower power requirement, two options were possible; either the

construction of an amplifier unit using APEX power amplifier SA16, or the purchase of amplifier

unit from Kinetic Ceramics. Since building an amplifier unit is a time consuming project prone to

many errors, the decision was made to buy a single, three channel amplifier that has bandwidth

characteristics of DC to 3 kHz, a voltage level of 800 V peak-to-peak and a peak current value

of 1.5 Amps per channel. The use of this amplifier should enable some level of voltage output at

frequencies up to 1 kHz for the stacks selected.

3.5.6 LabVIEW Control Loop

The three main testing modes of the component testing facility are testing a sample against a

programmable impedance, testing an active sample with a constant load, and testing an active

sample under constant displacement. These three testing modes require that the state of the

system is constantly monitored and modified, or actively controlled. Therefore, a control loop was

implemented in LabVIEW. The control loop allows the user to specify what kind of control is

wanted, what the target information or loading function is desired, and what other parameters are

to be monitored and recorded at the same time. The input of the control loop is the displacement

and force information from the displacement sensors and a load cell. The output of the control

loop is the voltage level to supply to the driving stacks. The voltage level is determined by first
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detecting what the desired change of the system is, and then calculating the necessary change in

electric field.

The control loop implemented was designed using classical control techniques. A regulator was

designed based on the experimentally derived frequency profile. The profile was found by taking

transfer function of the input driving stacks to the sensor outputs. This frequency response was

then analyzed and a controller designed to compensate the system. Since the requirement on this

initial controller was to provide disturbance rejection of low frequency disturbances of less than one

Hertz, the controller design has a low frequency roll-off in order to increase the high frequency noise

rejection of the system. The non-compensated and compensated systems are shown in fig. 3-11.

The transfer function of the controller is

G(s) Kw w2w3 (s + WI) (s + w4) (3.6)WW4 (S2 + 2CW0S + W0) (S2 + 2(W2S + W (S + W3)

where wo - 2 Hz, w, = 7 Hz, w2 = 40 Hz, w3 = 0.2 Hz, w4 = 1 Hz, and = 0.707. This continuous

system controller was .transformed into a discrete time controller with a sampling frequency of

40 Hz. The transformed equation in difference form was used to implement the controller, resulting

in the following controller representation.

u(k) 1.375u(k - 1) + 0.3556u(k - 2) - 0.8149u(k - 3) - 0.184u(k - 4)

+0.2618u(k - 5) + 0.003068y(k) + 0.009598y(k - 1) + 0.007714y(k - 2) (3.7)

-0.003769y(k - 3) - 0.007625y(k - 4) - 0.002673y(k - 5)

Verification of the Control Loop

To verify the operation of the control loop, tests were performed to see if the force present in the

system could be held constant in the presence of a disturbance to the system. Three different

piezoelectric stacks with different stiffnesses were used as disturbance sources. The stiffness of

the stack determines the amount of authority the testing machine has to control its generated

disturbance. Since the controller was designed to control low frequency disturbances, the input

disturbance had a frequency of 0.025 Hz with many amplitudes for each of the disturbance sources.

For all of the tests run, using the control loop with a gain of 12.6 allowed for the control of the

force in the system to the order of the sensitivity of the load cell. A plot of a representative test
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Figure 3-11: Transfer function of the compensated and uncompensated control loop for control of
the testing machine.

run with a Sumitomo MLA-20B actuator is shown in fig. 3-12. As can be seen by the force and

displacement time traces, the actuator was allowed to displace under constant force conditions.

3.5.7 Sample Alignment Mechanism

It was originally assumed that by using samples with spherical endcaps, bending within the sample

would be minimized, allowing for accurate measurements of the axial displacement of the sample.

However, the spherical endcaps resulted in large errors at small values of system preload, as can

be seen in figures 3-13 and 3-14. These errors were eventually determined to be the result of

Hertzian contact stiffnesses that were not originally predicted. To counteract that problem, a move

to samples with flat ends was made. However, this move necessitated the design and construction

of a device that eliminates bending in the sample due to non-parallelism of either the sample faces

or machine faces. Typically, rocker-type mechanisms have been used to fulfill this role[11, 9, 12].

However, the spherical ends on the rocker would have the same problems that the spherical ends

on the sample had. Therefore, a flexure mechanism was designed that had a very low bending

stiffness with a moderate axial stiffness. This device, after its initial bending to counteract the face

non-parallelism, has a known, constant stiffness that can be compensated for in the analysis of the

data. The design of the mechanism is shown in fig. 3-15.
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Figure 3-12: Representative time traces of a sample in the testing machine with the controller
driving constant force tests in the presence of sample disturbance.
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ical endcaps under small preload values.
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Figure 3-14: Mismatch in tested sti ffness with theoretical stiffness for a steel bar with spherical
endcaps under small preload values.

Figure 3-15: Alignment mechanism designed to compensate for the non-parallelism of sample faces.
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3.6 Design Validation

To validate the design of the compressive testing facility after it was constructed, a series of tests

were run to make sure the machine gave the expected results. The were two main items that

needed to be checked; first that the load and displacement sensors were giving accurate readings,

and second that the natural frequency of the system was near or above that predicted with the

simple four node model.

The load and displacement sensors were tested along with the basic functionality of the testing

machine by testing the stiffness of different samples with known stiffnesses. The two samples tested

for accuracy were a steel rod and an aluminum rod. The steel rod has a length of 9.8 cm and a

diameter of 1.27 cm, resulting in a theoretical stiffness of 257 x 106 N/in. The aluminum rod has a

length of 8.34 cm and a diameter of 0.76 cm, resulting in a theoretical stiffness of 39.5 x 106 N/in.

The stiffnesses measured by the testing machine resulted in the theoretical stiffness expected with

the correction for the alignment mechanism for each of the samples. The results of these tests

are shown in figures 3-16 and 3-17. Being able to consistently measure the correct stiffness of

the samples gave confidence that the testing machine was accurately measuring the deflection of a

sample at different load levels.

Th effect of sample placement on the stiffness measured is also an important factor to examine

since it is impossible to always position the sample exactly in the center of the tungsten carbide

inserts. Therefore, stiffness tests were performed on the steel and aluminum bars while placed in

different positions on the inserts ranging from the top of the insert to the bottom. Results are

presented in figs. 3-18 and 3-19. It is apparent from these figures that the stiffness variation with

gross position change is very large. When reasonable effort is made to centrally locate the sample,

variations of tested stiffness should be within 5% since the position changes represented in the

figures are each over a quarter of an inch. However, it is important to be cognizant of the sample

position.

The natural frequency of the system was measured with the large stack configuration and steel

rods. The natural frequency was measured using 100 mV rms random noise inputs and taking

transfer function data from a Tektronics 2630 personal Fourier analyzer. Transfer functions were

taken from three different measuring locations; the position sen~ors, the Kistler load cell, and the

Entran load cell. A steel bar was used as the sample during frequency response testing.

The first reading was the transfer function from the position sensors to the stack input. As
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Figure 3-16: Stiffness information for a steel bar tested in the testing machine. The stiffness of the
system is shown as seen by the strain gages, the displacement sensors and the expected measurement
by the strain gages and displacement sensors.
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Figure 3-17: Stiffness information for an aluminum bar tested in the testing machine. The stiffness
of the system is shown as seen by the displacement sensors, the theoretical stiffness, and expected
displacement sensor readings.
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Aluminum Bar Stiffness dependence on Position
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Figure 3-18: Variation of the stiffness of an aluminum rod based on position in the testing machine.
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Figure 3-19: Variation of the stiffness of a steel rod based on position in the testing machine.
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Figure 3-20: Transfer function from the optical displacement sensors to the input to the stack in
the system configuration of the large stack and steel rods.

can be seen from figure 3-20, there is a small peak and resulting phase shift at a low frequency of

about 80 Hz with a larger peak above 1 kHz. The first peak is a result of the position sensor stands

vibrating like a flexible beam. The second peak is found in all of the transfer functions taken and

is therefore probably the first mode of the system.

The next two transfer functions are from the Entran and Kistler load cells to the input to the

stacks. These are presented in figure 3-21 and figure 3-22. Again, the first peak of the system is

above 1 kHz in both of these figures. The Kistler load cell transfer function also includes a transfer

function taken with the small stacks. The comparison of the data shows the peak shift in the small

stack transfer function due to the greater stack stiffness.

The final transfer function presented is the expected transfer function that was predicted by

the model. This transfer function is plotted in figure 3-23 for each of the four possible system

configurations. Although the shape of the transfer function is the same as the transfer functions

measured, the peaks for each of the systems is off by a few hundred Hertz. From these results, we

can determine that the model predictions were conservative and closed-loop control of the system

should be possible up to 500 Hz. The transfer function assumed an input force at mass two and

shows the response of the displacement of X3 from fig. 3-6.
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Figure 3-22: ransfer function from the Kistler load cell to the input to the stack in both system
configurations.
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Figure 3-23: Transfer functions of the four system configurations as predicted by the four node
model. Transfer functions were taken from a force input at mass two to a position measurement at
mass three.
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Chapter 4

Validation of Theoretical Results

4.1 Testing Methodology

The goal of testing is to validate the theoretical results derived in chapter 2 for the actuation

efficiency and work output of a system. To validate the theory, it is necessary to measure the work

of the system, both the electrical and mechanical work, when a sample is working against linear

and non-linear loads. If the work measured is close to the work that the theory predicts for the

choice of material and loading function, then it can be assumed that the theory is validated.

The tests should be taken on a uniaxial material working against a programmable uniaxial load.

The most readily available uniaxial material is a multi-layered piezoelectric stack. Therefore, tests

were taken with a sample stack and the electrical and mechanical work measured from the output

of the stack. The only drawback of piezoelectric stacks is that their derived coupling coefficient is

much lower than the typical bulk material coupling coefficient.

4.2 Measurement of Mechanical and Electrical Work

Measuring the mechanical work of the system is achieved -by measuring the force and displacement

at every time step and then integrating the force with respect to displacement. Since the component

testing facility is designed to measure force and displacement, the mechanical work in the system

comes directly from the integration of the measured parameters. The electrical work of the system is

measured much the same way as the mechanical work by recording the current and voltage supplied

to the tested sample. The Kepco amplifier used to run the sample has a current and voltage monitor

integrated into the system. These values are measured through the data acquisition system. The
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current measured by the system is multiplied by the voltage in the system at the same time and

integrated with respect to time to find the electrical work in the system. The actuation efficiency

is found by dividing the measured mechanical work by the measured electrical work.

4.3 Testing Plan

To verify the theory presented in Chapter 2 two different kinds of tests were used to compare to the

theory. The first kind of test is the verification of figure 2-4, the variation of actuation efficiency

and work output with stiffness ratio when a one-dimensional active material is working against a

linear load. The second kind of tests verify the increase in work output and actuation efficiency by

working against a non-linear load. The two types of tests are performed on a Sumitomo Corporation

multi-layered actuator, part number 20B.

4.4 Test Specimen Selection and Information

4.4.1 Sample Selection

The sample selection was limited by the authority and performance of the testing machine when

working against samples of different stiffnesses. Generally, the testing machine can test samples of

all stiffnesses while simulating zero stiffness conditions up to simulating a load of the same stiffness

as the sample. However, the testing machine is limited when simulating loads of stiffnesses much

greater than the sample. Therefore, a sample of stiffness on the same order of the stiffness of the

load chain, 17.5 N/jan while using the small stacks, was needed to be able to simulate linear loads

of large relative stiffnesses and non-linear loads that have a large initial stiffness.

There were three stacks initially tested to determine which was the best stack to use for the

complete battery of tests. The three stacks were an EDO corporation E-400P3 stack, a Polytec, PI

P-820.30 series stack and a Sumitomo Corporation MLA-20B stack. The three stacks were tested

for their suitability by taking a sweep of data with the stack working against linear loads of different

stiffnesses. From this analysis, it was determined that the Sumitomo stack could be tested at the

highest relative stiffness, and therefore was used in the subsequent function testing. The physical

properties of the Sumitomo Corporation stack are presented in table 4.1[17].
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Table 4.1: Physical Characteristics of the Sumitomo Corporation Stack MLA-20B.

Total length 41 mm
Active length 37 mm
Width 4.5 mm
Height 5.2 mm
Cross-sectional Area 23.4 mm2

Layer thickness 0.18 mm
Number of Layers 200
Maximum Voltage 250 V

4.4.2 Sample Information and Characterization

The Sumitomo actuator was tested to determine the mechanical and electrical properties of the

stack. These values were then compared to the bulk material properties to ensure that the test

results were reasonable values of the material properties. Tests were performed to determine the

stack properties of stiffness, electro-mechanical coupling, and dielectric constant. The bulk material

properties[17] and measured stack properties are compared in table 4.2.

Stiffness and Elastic Constant

Stiffness tests were performed on the actuator in the compressive testing facility. The actuator

was placed in the machine with the alignment mechanism to ensure that there was no bending in

the sample during testing. It was necessary to test the stiffness of the actuator at a small preload

value to avoid coming close to the blocked force loading of the actuator. To allow this condition,

the stacks were powered prior to applying the preload. When applying the preload, the Entran

load cell output value was monitored with a multimeter to make sure that the actuator was not

overloaded. The preload was applied through the use of the hand-crank on the linear positioner to

better apply a known preload value of 45 N. The actuator was tested in its open circuit condition.

Tests were performed through the actuation of the small stacks in the loading path. The voltage

signal sent to the stacks to apply the uniaxial load was

Vpp = IVmag sin (0.21rt) (4.1)

Tests were performed for 15 seconds at 0.1 Hz and a maximum signal input to the KC amplifier of

7 V. It was necessary to use the above signal to test the actuator because the preload was applied
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Table 4.2: Measured and Published material values for Sumitomo MLA-20B Actuator.

Material Property Bulk Material Stack Tested Stack
Item Units (SPEM-5D) Properties Properties

Stiffness (k) N/pn - 31.6* 18.3 ± 5%

Elastic constant (33) 10- 2 m2 /N 20.0 - 34.5*

Capacitance (CT) nF - 800 ± 20% 785 ± 391 1050 ± 552

Dielectric constant 4300 3570* 34111 45682*

(6,33/-o)

Xo/Eo pm/V - 0.16 0.162

Electro-mechanical 10- 12 C/N 640 778* 788*
coupling term (d3 3 )

Blocked Force N - 1200 -

Free Strain n - 42-3 -

I Measured using HP impedance analyzer 2 Measured during bench top testing

Values marked with an * are calculated based on measured values or values
published in product literature[17]. Equations are presented in section 4.4.2.

with the driving stacks already powered. If a negative voltage was supplied to the KC amplifier to

drive the stacks, the stacks would retract from their initial powered position. This could result in

the actuator falling out of the testing machine, making the stiffness test fail and possibly cracking

the ceramic. Representative time traces of the force and displacement measured are shown in fig. 4-

1. The Kistler load cell was used as the force measurement in the system; the displacement was

measured by the MTI Photonic sensors.

The displacement measured by the Photonic sensors is the combined displacement of the actua-

tor and the alignment mechanism. To determine the displacement (and thereby the stiffness) of the

actuator from the data, it was necessary to subtract the effect of the alignment mechanism. Since

the stiffness of the alignment mechanism is known and the stiffness of the actuator is desired, it is

easier to subtract the effect of the alignment mechanism from the correlated force and displacement

information than from the displacement information alone. If kmeas is the slope of the line fit to the

data taken, kE is the stiffness of the actuator, and katign is the stiffness of the alignment mechanism,
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Figure 4-1: Time traces of the force and displacement measurements taken when finding the stiffness
of the Sumitomo actuator.
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Figure 4-2: Data taken to find the stiffness of the Sumitomo stack.
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then the three values can be related in the following way to determine the stiffness of the actuator

1 1 (4.2)

where the stiffness of the alignment mechanism is known to be 97.3 N/psn. The line fit to the data

was a least squares first order polynomial fit. Figure 4-2 shows the measured value of stiffness,

k,ns, and the actuator stiffness, kE, with the correlated displacement and force data. The data fit

shown results in a stiffness value of the actuator of 18.3 N/pn. It should be noted that the 2 mm

thick isolation plates on the ends of the actuator were assumed rigid when finding the stiffness of

the actuator.

To find the elastic constant from the measured stiffness information, it is necessary to use the

physical properties of the actuator. Generally, the axial stiffness of a bar is the Young's Modulus

of the material multiplied by the cross-sectional area and divided by the length. However, since

a uniaxial force was applied and the material was allowed to strain in all directions, the testing

conditions allow only for the derivation of the elastic constant and not Young's Modulus from the

test data. Therefore the equation that relates the measured stiffness value to the elastic constant

is

E Ar (4.3)
833 (43

where Ac, is the cross-sectional area of the actuator and 1 is the active length of the material. It

should also be noted that solving this equation for stiffness is how the calculated stack stiffness was

found from the bulk material properties, as presented in table 4.2.

The measured values of stiffness and elastic constant are considerably different from the bulk

material values. The differences can largely be attributed to losses introduced in the manufacturing

process and variations in the bulk material properties. In addition, small errors are introduced in

the assumption that the insulation pieces are rigid and by neglecting the stiffness of the interface

between the insulation pieces and the active part of the stack.

Capacitance and Dielectric Constant

The capacitance of the actuator was found in two ways. The first method involved taking admit-

tance data with the Hewlett Packard Impedance Analyzer and finding an equivalent capacitance.

The second method was taking benchtop data by applying various values of voltage and measuring
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the current signal going to the actuator. Both of these methods are described in detail below.

The first method involved finding the equivalent capacitance of the actuator based on the

frequency response of the stack with small applied voltages. Tests were taken through the use of

the Hewlett Packard 4194A Impedance/Gain-Phase Analyzer. The maximum applied voltage from

the Analyzer is 35 V, although it is likely that the actual applied voltage was far below the maximum

value. The actuator was tested in free-free conditions. Admittance data was taken from 100 Hz

to 10 kHz to avoid the first resonance of the actuator at 31 kHz. The response of an equivalent

capacitance was automatically calculated based on the measured response of the actuator by using

the functionality of the HP Analyzer. The resulting capacitance at constant stress is 785 nF.

Benchtop tests were also taken to find the capacitance of the actuator. The sample was tested in

* free-free conditions while being powered by a Trek 609D-6 High Voltage Amplifier. The National

Instruments/LabVIEW Data Acquisition System was used to generate the input signal to the

amplifier and record the time profiles of current and voltage. The current and voltage signals

measured were the output signals from the current and voltage monitors on the Trek amplifier.

The input and output voltage signals have a gain of 1000. The current signal has a scaling factor

of 2 mA/V. The signal used as input to the amplifier is

1. 1(4)

VVppI 1 max sin (207rt) + 1 V. (4.4)
2 2

Tests were taken for 0.5 seconds at 10 Hz. Maximum voltage levels were taken from 25 V to 225 V

at 25 V intervals. A representative time trace of the current and voltage data is shown in fig. 4-3.

The time integral of current was taken to find the charge on the electrodes. This new time

trace was plotted versus voltage and the maximum voltage and largest current points were found

for each test. The maximum values were plotted on a new graph with a least squares linear fit, as

shown in fig. 4-4. The slope of the linear data fit is the tested capacitance of the actuator under

constant stress, and has a value of 1050 nF.

The dielectric constant under constant stress can be found from the measured value of ca-

pacitance by using the physical stack properties. The equation that relates the capacitance and

dielectric constant is

ET CTt1
3- Ac r N (4.5)

where t is the thickness of each layer and N is the number of layers in the actuator. This equation
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Figure 4-3: Representative time traces of Current and Voltage values measured while finding the
capacitance of the Sumitomo actuator.
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Figure 4-4: Test used to find the dielectric constant of the material at varying values of electric
field.
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Figure 4-5: Representative time history of voltage and displacement measured when finding the
electro-mechanical coupling in the Sumitomo actuator.

is used with the values presented in table 4.1 to find the calculated values of dielectric constant

from the measured values of capacitance. The dielectric constant for the stack was found from the

published capacitance from the same equation. Both measured values of capacitance translate into

dielectric constants that are within the accuracy range of the published values for the bulk material

and stack information.

Displacement vs. Voltage and the Electro-mechanical Coupling Term

Bench top displacement vs. voltage tests were taken in order to find an approximate value of

the electro-mechanical coupling in the system. Tests were taken with the actuator in free-free

conditions. Tests were taken with the same setup as-the bench top dielectric tests were taken with

the displacement measured using the Photonic sensors. The voltage was applied and monitored

with the Trek amplifier. The input signal was generated and the results recorded using LabVIEW.

The tests were taken at 10 Hz for 0.5 seconds. A representative time history of the voltage and

displacement is shown in fig. 4-5. The maximum voltage and displacement value for each test was

recorded and plotted to determine the displacement vs. voltage value. The correlation is shown in

fig. 4-6. A least squares, linear fit to the data was performed and resulted in a'measured value of

0.162 /n/V. The linear fit neglected the 175 V and 200 V data points when performing the fit.

99



Voltage vs. Displacernent Correlation for finding d=

*7 Max displacement at applied voltage
Unear fit

150

ISO

50

0.5 1 1.5 2 2.5 3 3.5 4
Displacement (m) x le

Figure 4-6: Test used to find the electro-mechanical coupling term of the Sumitomo stack at varying
values of applied voltage.

The electro-mechanical coupling term can be found from the displacement vs. voltage value

through the use of the physical properties of the stack. The equation that relates the two values is

d33  (4.6)

Using this equation with the measured value of displacement vs. voltage results in a electro-

mechanical coupling term of 788 x 1012 m/V. This equation is also used to convert the published

stack value of displacement vs. voltage to the electro-mechanical coupling term.

4.4.3 Selection of Material Values and Coupling Coefficient

Before continuing, it is desirable to determine what range of values will be considered reasonable

for each of the actuator properties. These values will then be used to determine what range of data

should be taken for the linear and non-linear tests. Each of the values will be looked at in turn and

ranges of reasonable values decided upon. The final range of values used is presented in table 4.3.

The first parameter considered is the elastic constant. Because the only published value of

elastic constant is for the bulk material, it is difficult to justify the use of the derived stiffness value

from the bulk material. However, the disparity between the value of the elastic constant for the
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Table 4.3: Ranges of the Sumitomo material properties used in the theoretical comparison to the
data.

Material Property Average Maximum Minimum
Item Units Value Value Value

Elastic Constant 10-1 2m 2 /N 31.3 34.5 27.5
Dielectric Constant E3/E0  4015 4818 3215

Electro-mechanical coupling 10-1 2m/V 785 824 746

bulk material and the derived elastic constant from the measured stiffness value makes it difficult to

attribute the errors entirely to material inconsistencies and manufacturing tolerances. Therefore, a

reasonable range of values to consider for the elastic constant is a range from the constant based on

the measured stiffness value, 34.5 X 10 - 12 m 2/N, to a value halfway between the bulk and measured

values at 27.5 X 10 - 12 m2/N. Using this range of values should capture the actual stiffness of the

stack.

Next, it is necessary to determine a reasonable range of values for the dielectric constant. Since

there are many reasonable values to consider, and since the minimum and maximum values are

both measured parameters, it is perhaps best to take an average of the values and consider a range

of =±20% around that value. The average value of the dielectric constant is 4015 Co with the upper

and lower bounds at 4818 8o and 3215 60 respectively. This completely bounds all values found

for the dielectric constant.

The electro-mechanical coupling term is the easiest value to bound because of the similarity in

the published and measured values. It can be assumed that the bulk material value will not be as

accurate because of the configuration issues. Therefore the value assumed for the electro-mechanical

coupling term is 785 X 10- 12 m/V with an error factor of 5%.

Finally, the coupling coefficient to be used must be determined from the published value, the

tested value, and the values resulting from the different combinations of the stack properties, In

terms of the fundamental properties of an active material, the coupling coefficient for the extensional

mode of operation is defined as

3 d3 3
2  (4.7)

33 33

However, it is also possible to find the coupling coefficient in the extensional mode of operation by

finding the resonance and anti-resonance of the sample. This method was used to find the published

coupling coefficient of the bulk material and measured for the stack by using the HP analyzer. The
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Table 4.4: Comparison of different possible material coupling coefficient values for the Sumitomo
actuator.

Method of Coupling Coefficient Data
Obtaining Value k Label

Bulk Material 0.72
Measured Stack Resonance 0.44

max s33 max 33  max d33 0.675 Theory 1
min s33 min 3 min d33  0.843 Theory 2

mean s33 mean ET mean d33 0.745 Theory 3
33 max 33 min d 3 3  0.611 Theory 4

min s33 min 3 max d33 0.932 Theory 5

equation used to relate the resonance and anti-resonance of the stack to the coupling coefficient is

k 33 = 2 f,4tan ( fr (4.8)

where fr and fa are the resonant frequency and anti-resonant frequency respectively.

The measured stack coupling coefficient was found by taking the frequency profile of the stack

with the HP impedance analyzer. The initial frequency sweep was taken over a range of frequencies

from 100 Hz to 40 MHz. This initial sweep located the frequency in the 10 kHz decade. Then the

sweep was changed to a sweep from 10 kHz to 100 kHz to find the actual value of the resonance. The

resonant and anti-resonant values were measured from the analyzer through the use of the "min"

and "max" functions and the values recorded. The resonant frequency was found to be 31.26 kHz

and the anti-resonant frequency was 40.04 kHz. These values result in a coupling coefficient of 0.44.

A comparison of all of the coupling coefficient values is presented in table 4.4. The coupling

coefficients found using the resonance method are presented first. Then the coupling coefficients

found from combinations of different stack values are presented. As can be seen from the values, the

different combinations of property values can result in a wide range of coupling coefficient values. It

is important to again limit the range of values considered for the coupling coefficient while keeping

in mind that this limitation will affect the effective range of material properties that are used.

Looking at the coupling coefficient values, it is difficult to just decide upon a range to use in

the data analysis since each value of coupling coefficient depends on the use of specific stiffness,

dielectric constant and electro-mechanical coupling values. In turn, each of these values will effect

the predicted stiffness, work input, work output, and actuation efficiency values when analyzing
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testing results. Therefore, the five values in table 4.4 based on material properties will be used

in the analysis of the data with the corresponding material values used when more than just the

coupling coefficient is needed.

4.5 Validation of Linear Loading of Piezoelectric Materials

Tests were performed on the stack while working against a linear load of different stiffnesses. The

lower and upper bounds on the stiffness were determined by the amount of control that was required

of the testing machine to achieve the stiffness value. Therefore, for a 200V maximum input voltage

it was possible to test a range of stiffness ratios from 0.5 to 2. The voltage input to the stack was

half of a cycle of a sinusoid with a maximum value of 200 V and a frequency of 0.025 Hz. The tests

were performed using the controller designed for the testing machine and described in section 3.5.6.

Tests were taken for 20 seconds at a 40 Hz sampling frequency with a gain of 12.6.

Two to three tests were performed at each stiffness value and the current, voltage, force and

displacement time traces were recorded. Representative time traces of the values recorded are

,presented in fig. 4-7. The force and displacement measurements were generally noisy measurements

that produced more noise in the system when integrated. Therefore, eight point data averages of

the force, inside displacement and outside displacement values were performed. Thq averaged total

displacement value was the difference of the averaged inside and outside displacement values. From

the values recorded, the electrical and mechanical work was determined at each time through the

following expressions.

w, = I (4.9)

Win = JVI (4.10)

The integrals, when taken over the complete cycle, should return to zero assuming that none of the

work was lost to the environment., Therefore, the important information is the time history of the

electrical and mechanical work of the system.

The time history of electrical and mechanical work is shown in fig. 4-8 for a sample case of the

active material working against a load of the same stiffness. The current data has a bias offset that

is removed before taking the time integration of the product of the voltage and current so that the

cycle work returns to zero. The bias current is ±20tA, considerably smaller than the peak current
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Figure 4-7: Representative time traces of the force, displacement, voltage and current data measured
during testing a piezoelectric actuator working against a linear load.

values that are on the order of 1 mA. The force and displacement used to find the mechanical work

are the 8 point averaged values.

The maximum value of the mechanical and electrical work was recorded for each test taken and

averaged at each stiffness ratio. Additionally, the maximum value of the mechanical work for each

test was divided by the maximum value of the electrical work for each test and then averaged at

each stiffness ratio to determine the maximum actuation efficiency variation with stiffness ratio.

These results are shown in figures 4-9, 4-10 and 4-11. In order to plot each value in relation to the

stiffness ratio, an assumed actuator stiffness of 20.2 N/pzn was used. The data points plotted are

the average value of the tests taken at that stiffness ratio. The error bars illustrate the range of

values recorded at each stiffness ratio.

The five theory lines shown in each figure are based on the variations of the assumed material

properties, as described in section 4.4.3. The theory lines are based on the following equations for

work output, work input and actuation efficiency of linear systems working against a linear load.

-- 1A Ts2N[oatI2 ]

W2.t - ,33 N a k33  (4.11)
1A T(2 a +

Wi - 33  N(1 +k3 (4.12)
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Figure 4-8: Electrical and Mechanical work of an active material working against a uniaxial load
of the same stiffness, time traces.

Ef - [  ] k23  (4.13)a k2
a-1k33

As can be seen from these equations, the most important single material value for fitting the

experimental results and theoretical results is the dielectric constant of the material. However,

the various values of coupling coefficient also significantly effect the data correlation. In addition,

the elastic constant effects the theoretical fit to data since the assumed stiffness value effects what

stiffness ratio value the work data is plotted at. Therefore, changing the actuator stiffness would

shift the data points one direction or the other. The material constants that correspond to the

data labels are shown in table 4.4.

The mechanical work data shows good correlation with the average theory lines as can be seen

in fig. 4-9. Both the trend of the maximum work output location and the magnitude of the work

output data correlate well with the expected results. The theory line that most closely matches

the data is the "Theory 1" line, consisting of the maximum values of the material constants. This

is expected since the tested values of the material constants lie in the upper region of the material

values considered.

The electrical work data shown in fig. 4-10 does not correlate well with the expected theoretical
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Figure 4-9: Maximum work output variation with stiffness ratio for an active material working
against a linear load.

results. The data lies a factor of 2 or more above the expected theoretical results. A possible

reason for this discrepancy is the frequency at which the actuator was run. The tests were taken

at a very low frequency of 0.025 Hz. However, at frequencies this low, it is difficult to get accurate

current data because most of the data occurs in current spikes, as can be seen in fig. 4-7. When

dielectric constant values were measured at low frequencies, the values were often off by as much as

a factor of 2 and sometimes more. Therefore, it is likely that the gross errors in the electrical work

data are a product of the testing frequency and not the theory presented. Unfortunately, it is not

possible to test a piezoelectric material working against a load in the component testing facility

in its current configuration at a high enough frequency to get accurate current measurements. By

eliminating the dynamics present in the displacement sensor stands and with a redesigned control

loop it should be possible to take data at higher frequencies.

The actuation efficiency data is presented in fig. 4-11. Again, there is a significant mismatch in

the data presented versus the expected theoretical results. The difference is due to the problems

with the electrical work data. If the electrical work data more closely matched the expected results

based on the theory, then it is likely that the actuation efficiency would also match the expected

results since the mechanical work data closely matches the expected results. Unfortunately, the

large values of electrical work make the variation in measured actuation efficiency with stiffness
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ratio very small.

4.6 Validation of Non-linear Loading of Piezoelectric Materials

To validate the performance increases possible through the use of non-linear loading functions,

tests were taken on the stack when working against the two types of loading functions used in the

theoretical derivation. As a point of comparison, the performance found when the active material

was working against non-linear loading functions was compared to the performance of the material

when working against a linear loading function with the same stiffness value as the secant stiffness

of the non-linear loading functions. This was done for four different stiffness values at two different

voltage levels.

The non-linear loading functions were tested through the use of the programmable impedance

functionality of the component testing facility. The functions were determined based on the desired

range of stiffnesses and the desire to maximize the area under the material load line. However, the

possible functions tested were limited by the initial stiffness of the function, since the non-linear

functions that capture the most area have the largest initial stiffness. Unfortunately, the conditions

on initial stiffness severely limited the functions that could be tested and in fact forced the testing

of functions that made the controller on the edge of instability. Therefore, tests of the material

working against some of the functions with high initial stiffnesses have severe startup transients

that effect the maximum work values calculated.

The functions tested at a 200V input voltage and 150V input voltage are shown in figures 4-12

and 4-13, respectively. In each figure eleven different functions are shown, three functions at each

of four stiffnesses with the exception of one "non-linear 1" function. The three different functions

are a linear function, a "non-linear 1" function, and a "non-linear 2" function. The base equations

for the "non-linear 1" and "non-linear 2" functions are

x -exp -  (4.14)jj! B

FJ -- D tanh (Cx) (4.15)

Using the defined loading functions as input to the controller allowed for verification of performance

increases through the use of non-linear loading functions.

Results of the tests were recorded and correlated similarly to the results of the linear tests.
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Figure 4-12: Non-linear and linear loads tested with a 200V stack input voltage, shown with the
material load line on a force-displacement graph.
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Figure 4-13: Non-linear and linear loads tested with a 150V stack input voltage, shown with the
material load line on a force-displacement graph.
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Again, multiple tests of each of the loading functions were performed and the results averaged.

The maximum work output and work input for the different loading function tests are shown in

figures 4-14 through 4-17 as a function of stiffness ratio. The figures show the results of the tests

taken at both 150 V and 200 V. The non-linear functions are plotted against their secant stiffness

ratio. An actuator stiffness of 20.2 N/Mn was used in calculating the stiffness ratio. Again, the

data point plotted is the averaged value of the tests taken at each stiffness with the error bars

demonstrating the range of values recorded.

The mechanical work results for actuator inputs of 150 V and 200 V working against linear and

non-linear functions are shown in figures 4-14 and 4-15. The data for the linear and non-linear

tests are shown with the five theory lines based on work against a linear load. In both figures,

the linear data points are within the range of expected results. The non-linear functions, however,

show significant increases in the work output over the linear work output values. For example, the

non-linear 2" mechanical work is a factor of two greater than the "linear" mechanical work for a

stiffness ratio of 0.7 and input voltage of 150 V. The "non-linear 1" mechanical work for the same

test was almost a factor of three greater than the "linear" work. Generally, the mechanical work

values show distinct increases by using non-linear loads instead of linear loads. However, it should

be noted that the reduced performance levels at the higher values of stiffness ratio are due in large

part to the problems testing these functions and should not be an indication of poor theoretical

performance.

The electrical work results are presented in figures 4-16 and 4-17. Similarly to the linear

electrical work data presented in fig. 4-10, the electrical work data presented in these figures are

up to a factor of two above the expected values for electrical work. The mismatch is likely from
the same frequency problems encountered in the linear work. However, it should be noted that the

"non-linear" work data does follow a similar downward trend as the "theory" lines.

Increases in the actuation efficiency of a piezoelectric material can be seen when the device

is working against a non-linear load verses a linear load. The actuation efficiency information is

presented in figures 4-18 and 4-19. The results are plotted against the expected linear theoretical

results from varying stiffness values and material coupling coefficient. At stiffness ratios close to one,

increases of more than a factor of two are demonstrated at the 150 V input level. Unfortunately, in

general the actuation efficiency is much less than the expected actuation efficiency. This is again

due to the problems with the electrical work data and measuring current values. However, the
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Figure 4-18: Actuation efficiency values of the Figure 4-19: Actuation efficiency values of the

active material when working against linear active material when working against linear
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put value of 150 V verses the stiffness ratio of put value of 200 V verses the stiffness ratio of

the linear load. Values are compared to the the linear load. Values are compared to the
expected work output based on work against expected work output based on work against
a linear function for varying values of coupling a linear function for varying values of coupling
coefficient. coefficient.

hoped-for increases in actuation efficiency through the use non-linear loads is clearly demonstrated

in the figures.

It should be noted that correlation of non-linear loading function secant stiffness with perfor-

mance increases should not be made based on this data since the performance values are highly

dependent on the actual loading function used. Instead, the general validation of increases in the

performance of active materials working against non-linear loading functions verses linear loading

functions should be understood.

4.7 Non-linear Loading Device

As mentioned at the end of Chapter 2, the increased work efficiency associated with a non-linear

loading function is only useful if a method is devised to load the active material non-linearly while

allowing a linear response of the structure being loaded. A common method of achieving a zero-

rate spring stiffness is by configuring two springs into a triangle and looking at the behavior of

the springs as they are loaded through the flat point of the system. Using this idea, a device

was designed that, with the right spring selection, can non-linearly load the active material while

linearly loading the structure. Obviously, this is only useful if the extra work from loading the
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Figure 4-20: Non-linear loading device. Presented in cross-section. Dimensions labeled are the
critical dimensions in the design.

material non-linearly is transmitted to the structure and not all used by the loading device.

The cross-sectional view of the proposed device is shown in figure 4-20. The device consists of

four springs where the uncompressed positions of the springs makes the central platform above the

spring hinge points by a specified angle. During operation the platform is pressed down through

the plane of the hinges and farther down to actually stretch the springs on the other side. The

critical dimensions of the device are the initial spring angle, the distance from the hinges to the

center of the platform, and the stiffness of the side springs. These values are all sized to the active

material used and the stiffness of the structure it is working against.

The equation that describes the operation of the springs with the load is the following

d
F=4k1  (cosf -cosPfl) (d - x)+ k2x (4.16)

where the angles are defined as

13 = tan-1( d - - ) (4.17)

f3i = tan- (d) (4.18)

and the stiffness of the load is k2 . The rest of the variables used are defined in fig. 4-20. This

equation can be inserted into the non-linear analysis presented in Chapter 2. The sample case

presented here uses eqns. 4.16, 4.17, and 4.18 with the values presented in table 4.5 to find the

performance metrics of the system. The load lines used are presented in fig. 4-21.

The analytical results are shown in the work profiles presented in figure 4-22. The top two lines
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Table 4.5: Values used in the analysis of the performance possible using the proposed design of the
non-linear loading device.

Variables Value

Load Stiffness k2  6 x 106 lb/in
Side Spring Stiffness k, 9 x1012 lb/in

Baseline b 0.0036 inches
Hinge Height d 3.5 x 10-6 inches

Load Line Comparison

D- - - evice LoadingUI
".... Materal Load line

Linear stiffness

.

50-

40-

30-

20 /

0I 2 3 4 5 6
Dispacement X

Figure 4-21: Load lines used in the analysis of the non-linear loading device.

in the figure are the work into the active material with and without the device. The next set of

lines are the lines that describe the work output of the system. The top most of the second set of

lines is the line that describes the work out of the active material and into the device and structure

combined. The smoothest line is the linear work line. This is the line that describes the work

into the structure when an unmodified material is working against a normal linear load. The final

line that weaves through the rest of the lines is the amount of work that finally makes it into the

structure from the active material and loading device. As can be seen in the picture, this value

peaks at a 71% increase over the linear function.

The work efficiencies were then plotted in figure 4-23. There are three functions compared in

this figure. The first one is the usual linear work equations that the non-linear loads have been

compared to throughout the derivation of Chapter 2. The second item compared is the work out
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Figure 4-22: Work in and work out plotted for Figure 4-23: Work efficiency of the system us-
the non-linear loading device. Looks at the un- ing the proposed design of the non-linear load-
modified linear system and the Work into and ing device.
out of the active material and the work into
the structure by using the non-linear loading
device.

of the active material and into the loading device and structure combined divided by the work into

the active material when loaded non-linearly. The third item compared is the same work into the

active material, but the mechanical work-out is just the work that is being done on the structure.

The last line is important in order to determine if the efficiency is actually increasing with the use

of the device over the active material working against the structure without the aid of the device.

The performance of this device demonstrates that it is realistic to design and build a device that

can actually load an active material non-linearly in order to increase its performance output and

transfer the increased performance to useful work on a linear load.
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Chapter 5

Conclusions and Recommendations

for Future Work

5.1 Conclusions of the Derivation of Actuation Efficiency and

Work Output in Coupled Systems

The work presented demonstrates the need for using the fully coupled system equations when:

examining the actuation efficiency of an electro-mechanically coupled system in normal operating

conditions. It has shown that the load coupling affects the expected performance for linear systems

as well as non-linear systems. The work has also demonstrated the importance of looking at

the true work efficiency of a system rather than relying on the material coupling coefficient as an

approximate measure of the actuation efficiency of a system. However, it was shown that the device

coupling coefficient does give a reasonable initial approximation of the efficiency of a system.

Through the use of the work expressions for a system under constant operation while working

against a load, it has been possible to demonstrate a method for achieving a higher actuation

efficiency over the same voltage cycle by utilizing the coupled nature of the piezoelectric material.

The coupled nature allows for a significantly increased actuation efficiency and work output of

systems that are working against a non-linear loading function instead of a typical linear load. A.

200% increase in the work output achieved by a linear function has been demonstrated as possible

through the use of a non-linear loading function.

The behavior seen in the theoretical examination of work in a coupled system have been experi-

mentally verified. A Sumitomo multi-layered actuator was used to test the stiffness ratio correlation
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of an active material working against a linear load. The work output values were verified and a

discussion of the difficulties in achieving accurate work input values presented. The actuator was

then loaded non-linearly. The increases in work output and actuation efficiency possible through

the use of non-linear loading functions were verified.

Finally, the design for a device that could be used to load an active material non-linearly while

loading a structure linearly was presented. The device was sized to maximize the work into the

structure. Although the performance of the device does not match the performance possible through

the use of the non-linear loading functions presented in Chapter 2, it does increase the amount of

work delivered to the structure compared to the amount of work delivered from the active material

working against the structure directly.

5.2 Recommendations for Future Work on the Analysis of

Coupled Systems

The theoretical derivation of the work in coupled systems in has been demonstrated and the results

for linear piezoelectric materials verified. However, there are many possible directions for the

continuation of this work. One main direction is to expand the examples presented to include

a non-linear material working against a linear load and a non-linear material working against a

non-linear load. Only when these examples have been examined can it be stated that the work

flow in piezoelectric materials has been fully explored and the main consequences for the design of

systems discovered. It is likely that when looking at the non-linear region of the material, either

further increases in the work output and actuation efficiency will be possible, or it will be found

that non-linear material effects negate the positive effects found by using the linear material model.

However, the importance of looking at the work flow is not diminished by a undesirable answer,

rather the examination needs to be done in order to design systems most effectively.

A second avenue of exploration is to expand the work flow analysis to include other types of

materials. Expanding the derivation for other materials that have material models in the correct

two-block form, like the electrostrictive model presented by Fripp and Hagood[8], is a straight

forward application of the equations presented. Exploration of the work flow for materials that

do not have the correct form will require a more complete understanding of how energy is moving

in the system and will likely run into the same type of problems that the derivation of a material

coupling coefficient for non-piezoelectric materials has encountered[Ill.
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In addition to these two main paths, it might be interesting to try to find the function that

maximizes the actuation efficiency and work output of a material working against a- non-linear

function. Although restraints on the kind of function looked at is necessary, it would be interesting

to see if the actuation efficiency is maximized with the same function that the work output is

maximized with. This exploration could also be expanded to find the function that maximizes

the work output or actuation efficiency of different classes of materials or kinds of piezoelectric

materials.

A final area that is open for more work is the design of a device that effectively transfers the

work done by the active material into the work done on the structure. The design of the non-

linear loading device presented does increase the work done on the structure, however the increases

possible by the system are not impressive. By looking at a different kind of loading device it should

be possible to design a device which significantly increases the performance of the active material

system.

5.3 Conclusions of the Design of the Component Testing Facility

A design was presented and validated for testing active materials in a uniaxial compressive testing

facility. The facility was designed to be able to test relevant mechanical properties of active materials

in a variety of testing conditions. The conditions that can be tested include testing at high preload

values, testing at a variety of frequencies, and testing with constant force or constant displacement

of the material tested. A design to include testing in thermal environments was also presented but

not validated. A control loop was designed and tested that allows for constant force and constant

displacement tests at frequencies up to 20 Hz. The parameters that are always measured in the

testing system are the system force and sample displacement information. Other information can

be recorded using the data acquisition system.

5.4 Recommendations for Future Work of the Component

Testing Facility

The main improvement necessary for the desired operation of the component testing facility is a

method of damping the vibrations in the position sensor stands in order to increase the testing

frequency above 20 Hz. The damping should be possible by either isolating the disturbance source,
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the interaction of motion of the endblock to the table surface, or by redesigning the method of

mounting the stands to increase the natural frequency of the stands to above the frequency range

of interest. With this improvement made, and the resulting redesign of the controller, it should be

possible to test samples in the testing machine at frequencies up to 800 Hz. At this high frequency

possible problems that might be encountered are the resonances of the testing machine, control

loop speed limits from LabVIEW, or amplifier performance limits. However, the effects of most of

these problems should be able to be reduced or eliminated without requiring the complete redesign

of the testing facility.

The design of the component testing facility as presented is a comprehensive design for a limited

range of tests. Currently, the tests must be in compression and must allow at least a small preload

on the system. However, there are many kinds of active materials that should be tested in tension.

Therefore, a primary recommendation for improving the Component Testing machine is to find

a way to allow tensile tests while still allowing the system to perform compressive tests with the

interchange of a few parts. In addition, there are parts of the design that a preliminary design

was made, but the additional piece never built for the system. These include the thermal testing

facility and a magnetic field yolk for testing magnetostricitve and magneto-shape memory materials

at both AC and DC magnetic fields. A next-generation design of the testing facility is not needed

at this point because the modularity of the current design allows for system modifications and

improvements without having to redesign the entire apparatus. However, if a next generation

design does become desired, the use of ball bearings over bushings is strongly recommended for

ease of plate motion and alignment.
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Appendix A

Component Testing Facility

Drawings

The following pages contain the complete set of mechanical drawings for the Component Testing

Facility. Materials used, tolerances and fasteners are noted on the pieces where appropriate. Ad-

ditionally, the complete set of assembly drawings are included for further enlightenment on the

design of the testing facility.

Figure A-i: Shaded parametric view of the model of the testing facility.
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